Воздух жидкий что это такое


Жидкий воздух - основа для получения чистого кислорода

Так как все газы имеют несколько агрегатных состояний и могут быть сжижены, то воздух, состоящий из смеси газов, тоже может стать жидкостью. В основном жидкий воздух производят для выделения из него чистого кислорода, азота и аргона.

Немного истории

До 19 века ученые считали, что газ имеет лишь одно агрегатное состояние, но доводить воздух до жидкого состояния научились уже в начале прошлого века. Это делалось при помощи машины Линде, основными частями которой были компрессор (электродвигатель, снабженный насосом) и теплообменник, представленный в виде двух свернутых в спираль трубок, одна из которых проходила внутри другой. Третьим компонентом конструкции был термос, внутри него и собирался сжиженный газ. Детали машины покрывались теплоизоляционными материалами, чтобы предотвратить доступ к газу теплоты извне. Находящаяся вблизи горловины внутренняя трубка оканчивалась дросселем.

Работа газа

Технология получения сжиженного воздуха довольно проста. Сначала смесь газов очищают от пыли, частиц воды, а также от углекислого газа. Есть еще одна важная составляющая, без которой не получится произвести жидкий воздух, - давление. С помощью компрессора воздух сжимают до 200-250 атмосфер, одновременно охлаждая его водой. Далее воздух идет через первый теплообменник, после чего делится на два потока, больший из которых идет в детандер. Этим термином называют поршневую машину, которая работает за счет расширения газа. Она преобразовывает потенциальную энергию в механическую, и газ охлаждается, потому что совершает работу.

Далее воздух, омыв два теплообменника и тем самым охладив второй поток, идущий навстречу, выходит наружу и собирается в термосе.

Турбодетандер

Несмотря на кажущуюся простоту, применение детандера невозможно в промышленных масштабах. Полученный путем дросселирования через тонкую трубку газ оказывается слишком дорог, получение его недостаточно эффективно и энергозатратно, а следовательно неприемлемо для промышленности. В начале прошлого века стоял вопрос об упрощении выплавки чугуна, и для этого было выдвинуто предложение делать поддув из воздуха с высоким содержанием кислорода. Таким образом возник вопрос и о промышленной добыче последнего.

Поршневой детандер быстро забивается водяным льдом, поэтому воздух нужно предварительно осушить, что делает процесс сложнее и дороже. Решить проблему помогла разработка турбодетандера, использующего вместо поршня турбину. Позднее турбодетандеры нашли применение в процессе получения и других газов.

Применение

Сам жидкий воздух как таковой нигде не используется, это промежуточный продукт в получении чистых газов.

Принцип выделения составляющих основан на разнице в кипении составных частей смеси: кислород закипает при —183°, а азот при —196°. Температура жидкого воздуха ниже двухсот градусов, и нагревая его, можно производить разделение.

Когда жидкий воздух начинает медленно испаряться, первым улетучивается азот, а после того, как его основная часть уже испарилась, при температуре —183° закипает кислород. Дело в том, что пока азот остается в смеси, она не может продолжить нагреваться, даже если использовать дополнительный подогрев, но как только большая часть азота улетучится, смесь быстро достигнет температуры кипения следующей части смеси, то есть кислорода.

Очищение

Однако таким путем невозможно получить чистые кислород и азот за одну операцию. Воздух в жидком состоянии на первой стадии перегонки содержит около 78 % азота и 21 % кислорода, однако чем дальше идет процесс и чем меньше азота остается в жидкости, тем больше вместе с ним будет испаряться и кислорода. Когда концентрация азота в жидкости падает до 50 %, содержание кислорода в парах увеличивается до 20 %. Поэтому испаренные газы вновь конденсируют и подвергают перегонке во второй раз. Чем больше было перегонок, тем чище будут полученные продукты.

В промышленности

Испарение и конденсация - это два противоположных процесса. При первом жидкость должна затратить тепло, а при втором - тепло будет выделяться. В случае если нет потери тепла, то теплота, выделяемая и потребляемая во время этих процессов, равна. Таким образом объем сконденсированного кислорода будет практически равен объему испаренного азота. Этот процесс называется ректификацией. Смесь двух газов, образованная вследствие испарения жидкого воздуха, снова пропускается через него, и некоторая часть кислорода переходит в конденсат, отдавая при этом тепло, за счет чего испаряется некоторая часть азота. Процесс повторяется множество раз.

Промышленное получение азота и кислорода происходит в так называемых ректификационных колоннах.

Интересные факты

При контакте с жидким кислородом многие материалы становятся хрупкими. К тому же жидкий кислород - очень мощный окислитель, поэтому, попав в него, органические вещества сгорают, выделяя много тепла. При пропитке жидким кислородом некоторые из этих веществ приобретают неконтролируемые взрывоопасные свойства. Такое поведение свойственно нефтепродуктам, к которым относится обычный асфальт.

fb.ru

Большая Энциклопедия Нефти и Газа

Cтраница 1

Р–РёРґРєРёР№ РІРѕР·РґСѓС… Рё кислород должны доставляться Рї храниться РІ лаборатории РІ металлических сосудах Дыоара.  [1]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… имеет широкое практическое применение. Р’ технике РёР· него получают чистый кислород. Дело РІ том, что азот, имеющий более РЅРёР·РєСѓСЋ критическую температуру, чем кислород ( СЃРј. таблицу РІ В§ 64), улетучивается РёР· жидкого РІРѕР·РґСѓС…Р° раньше кислорода. Поэтому через несколько дней РІ дьюаровском СЃРѕСЃСѓРґРµ СЃ жидким РІРѕР·РґСѓС…РѕРј остается РѕРґРёРЅ кислород. Путем фракционного испарения жидкого РІРѕР·РґСѓС…Р° получают также инертные газы, входящие РІ его состав: гелий, неон аргон, криптон, ксенон Рё радон.  [2]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… имеет РїСЂРё атмосферном давлении температуру - 180 РЎ. РџСЂРё его испарении РІ первую очередь улетучивается аэдт Рё остается жидкий кислород. Таким путем можно отделить РґСЂ Рі РѕС‚ РґСЂСѓРіР° основные составляющие атмосферного РІРѕР·РґСѓС…Р° Рё использовать РёС… для различных целей. Р�Р· чистых азота Рё РІРѕРґРѕСЂРѕРґР° РїСЂРё повышенных давлениях РЅР° специальных катализаторах получают аммиак. Чистый кислород применяется РІ медицине, для автогенной сварки, для ускорения доменного процесса. Смешанный СЃ органическими горючими жидкий кислород дает взрывчатые вещества, так называемые оксиликвиты, применяемые РІ РіРѕСЂРЅРѕСЂСѓРґРЅРѕР№ промышленности.  [3]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… представляет СЃРѕР±РѕР№ светлоголубую жидкость, непостоянную РїРѕ составу.  [4]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… имеет РїСЂРё атмосферном давлении температуру - 180 РЎ. РџСЂРё его испарении РІ первую очередь улетучивается азот Рё остается жидкий кислород. Таким путем можно отделить РґСЂСѓРі РѕС‚ РґСЂСѓРіР° основные составляющие атмосферного РІРѕР·РґСѓС…Р° Рё использовать РёС… для различных целей. Р�Р· чистых азота Рё РІРѕРґРѕСЂРѕРґР° РїСЂРё повышенных давлениях РЅР° специальных катализаторах получают аммиак. Р–РёРґРєРёР№ кислород применяется РІ медицине, для автогенной сварки, для ускорения доменного процесса. Смешанный СЃ органическими горючими, РѕРЅ дает взрывчатые вещества, так называемые Рѕ Рє СЃ Рё Р» Рё Рє РІ Рё С‚ С‹, применяемые РІ РіРѕСЂРЅРѕСЂСѓРґРЅРѕР№ промышленности.  [5]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… Рё кислород должны доставляться Рё храниться РІ лаборатории РІ металлических сосудах Дьюара.  [6]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… разливают РІ металлические СЃРѕСЃСѓРґС‹ Дьюара, принадлежащие потребителям.  [7]

Рљ задаче 5. Рё.  [8]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… заставляют кипеть РїРѕРґ уменьшенным давлением ( / - 193 РЎ), РїСЂРё этом РІ первую очередь обращается РІ пар ( выкипает) та составляющая часть вслдухм, которая Чмеет самую РЅРёР·РєСѓСЋ температуру кипения; неон, азот, криптон, аргон, кислород, ксенон. РџСЂРё понижении температуры пар становится насыщающим, начинается его конденсация. Р’ жаркий день испаряется больше РІРѕРґС‹.  [9]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… был впервые получен РІ 80 - С… годах прошлого столетия.  [10]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… представляет СЃРѕР±РѕР№ смесь жидкостей СЃ различными температурами кипения, Рё Рє нему РјРѕРіСѓС‚ быть применены РІСЃРµ законы фракционной перегонки.  [11]

Р–РёРґРєРёР№ РІРѕР·РґСѓС…, азот Рё кислород обладают очень РЅРёР·РєРёРјРё температурами кипения. Однако применение этих жидкостей РІ холодильных установках невыгодно, так как РЅР° РёС… получение затрачивается большое количество энергии.  [12]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… используют РІ РѕСЃРЅРѕРІРЅРѕРј как источник кислорода, потребность РІ котором больше, чем РІ азоте. РђР·РѕС‚, направляемый РІ огромных количествах РЅР° синтез аммиака, берется РІ РІРёРґРµ азото-РІРѕРґРѕСЂРѕРґРЅРѕР№ смеси, получаемой РёР· РІРѕР·РґСѓС…Р° Рё РїСЂРёСЂРѕРґРЅРѕРіРѕ газа.  [13]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… Рё кислород должны доставляться Рё храниться РІ лаборатории РІ металлических сосудах Дюара.  [14]

Р–РёРґРєРёР№ РІРѕР·РґСѓС… требует осторожного обращения СЃ РЅРёРј. Охлаждаемые детали должны быть тщательно обезжирены. Р’Рѕ избежание опасного повышения давления СЃРѕСЃСѓРґС‹, содержащие жидкий РІРѕР·РґСѓС…, должны иметь тепловую изоляцию Рё быть открытыми. РџСЂРё опускании охлаждаемой детали РІ СЃРѕСЃСѓРґ СЃ жидким РІРѕР·РґСѓС…РѕРј последний сильно РєРёРїРёС‚; поэтому СЃРѕСЃСѓРґ РЅРµ должен быть наполнен доверху.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Жидкий воздух — А при какой температуре воздух становится жидким? — 2 ответа



В разделе Другое на вопрос А при какой температуре воздух становится жидким? заданный автором Алёночка лучший ответ это Общий характер высотного изменения температуры воздуха был предугадан Аристотелем.Он делил атмосферу на три слоя, из которых прилегающий к Земле пригоден для жизни, следующий сильно охлаждён, а самый верхний, наоборот, сильно нагрет.При достаточном охлаждении воздух переходит в жидкое состояние.Жидкий воздух можно довольно долго сохранять в сосудах с двойными стенками, из пространства между которыми для уменьшения теплопередачи выкачан воздух. Подобные сосуды используются, например, в термосах.Свободно испаряющийся при обычных условиях жидкий воздух имеет температуру около –190 °С.Состав его непостоянен, так как азот улетучивается быстрее кислорода. По мере удаления азота цвет жидкого воздуха изменяется от голубоватого до бледно-синего (цвет жидкого кислорода) . До ХIX века считали, что газы являются таковыми по самой своей природе, и вопрос о их сжижении даже не возникал.Кислородный прибор с жидким воздухомЛишь в 20-х годах ХIХ века, применяя значительные давления, удалось получить в жидком состоянии хлор, аммиак, диоксид углерода и ряд других веществ “газообразной природы”. Однако оставались ещё многие, в частности основные газы воздуха — кислород и азот, которые, несмотря на все усилия, не сжимались. На них перенесли то представление, которое раньше было общим, и стали считать их “постоянными” газами.Только в 1877 г. впервые удалось получить в жидком состоянии одни из этих “постоянных” газов — кислород. Вслед за тем были сжиженны и все другие.Схема получения жидкого воздуха заключается в том, что предварительно освобождённый от пыли, влаги и углекислого газа воздух сжимается компрессором до 200-250 атм (при одновременном охлаждении водой) , проходит первый теплообменник и затем разделяется на два потока. Большая часть направляется в детандер — поршневую машину, работающую за счёт расширения воздуха. Последний, значительно охладившись в детандере, омывает оба теплообменника и, охладив текущий навстречу сжатый воздух, покидает установку. Другой поток сжатого воздуха, охлаждённый ещё более во втором теплообменнике направляется в расширительную камеру, после чего покидает установку вместе с воздухом из детандера. Вскоре наступает момент, когда в расширительной камере достигается температура сжижения, и затем он уже непрерывно получается в жидком состоянии.В 1938 г. П. Л. Капицей был разработан метод получения жидкого воздуха при низком давлении — всего 5-6 атм. По мере испарения азота жидкий воздух обогащается кислородом, причём температура его кипения постепенно повышается. Одновременно возрастает и плотность жидкого воздуха (приблизительно 0,94 г/см3 для нормального состава) . Температура его затвердевания также зависит от состава, причём наинизшая она (– 223 °С) при содержании 78% кислорода.

При температурах жидкого воздуха свойства многих веществ резко изменяются. Например, жёлтая при обычных условиях сера становится белой, Такие жидкости и газы, как спирт, диоксид углерода и т. п. , при соприкосновении с жидким воздухом затвердевают. Свинцовая пластинка после погружения в жидкий воздух издаёт при ударе ясный металлический звон, резина становится настолько хрупкой, что при ударе разбивается на куски, и т. д.Источник:

Ответ от ******[гуру]-273 по цельсию. Получается исскуственно. Сильно сжимают (повышают давление) потом резко падение давление - мгновенно охлаждается. Кстати кислород что в балонах примерно так получают .Ответ от Aлёнк@[гуру](в условиях нормального атмосферного давления воздух становится жидким при температуре около 80°К ( –190°C),Жидкий кислород на ВикипедииПосмотрите статью на википедии про Жидкий кислород

2oa.ru

Жидкая вода, жидкий воздух: криоланг

Говорят, что они были сложными, громоздкими, тяжелыми и ненадежными. Еще говорят, что, поскольку газ в них хранился в жидком виде, вдыхаемый воздух был очень холодным и у аппаратов часто обмерзали редукторы. Еще утверждают, что они были экономически невыгодными. И все это не соответствует действительности.

Жизнь Анатолия Витюка, поступившего в 1969 году в Одесский технологический институт холодильной промышленности (ОТИХП), изменила заметка в иностранном научном журнале. В ней упоминался перспективный подход к конструированию дыхательного аппарата, в котором воздух хранился не в толстостенных баллонах высокого давления, а в легких и компактных сосудах Дьюара. Это позволяло увеличить время автономной работы в три раза и значительно снизить массу и габариты аппаратов. «Я увлекался подводным плаванием с аквалангом, закончил курсы ДОСААФ, — вспоминает Анатолий. — Приходилось постоянно таскать тяжелые баллоны, и я тогда подумал — почему бы не разработать такой аппарат? Как известно, лень — двигатель прогресса. Это и предопределило тему моих диплома и диссертации, а также дальнейших работ».

Немного истории

Первые попытки создания криогенных дыхательных аппаратов относятся к началу XX века. Тогда в Германии (1905) и в России (1911) были предложены подобные аппараты для горноспасательных работ в шахтах (низкая температура жидкого кислорода к тому же позволяла снизить температуру вдыхаемого газа, что уменьшало вероятность перегрева). Криогенные аппараты для подводных погружений начали разрабатываться в конце 1960-х. Американские и французские инженеры планировали применять криоланги при обслуживании морских буровых платформ. В СССР первые аппараты были разработаны и изготовлены в ХФТИНТ. По заказу военных там создавали криогенные аппараты с замкнутым циклом дыхания с использованием жидкого кислорода и азота и газообразного гелия, причем состав смеси регулировался в зависимости от глубины без всякой электроники — на основе зависимости температуры кипения газа от давления. В Харькове были сконструированы и более простые в использовании гражданские аппараты с открытой схемой дыхания — криоланги АК-3 и АК-5, опытная партия последних была передана в середине 1970-х в Аварийно-спасательную службу Киева для испытаний.

В 1974 году Анатолий Витюк, к тому времени уже закончивший институт, предложил организовать на базе кафедры криогенной техники, которую возглавлял профессор Вячеслав Андреевич Наер, новую лабораторию криогенных систем жизнеобеспечения. Завкафедрой поддержал начинание, и в новой лаборатории началась работа. «За шесть лет я и мои коллеги Александр Балетов, Александр Сысоев и Николай Тешин разработали несколько моделей газотеплозащитных систем для работы при высоких температурах для пожарных и спасателей, — вспоминает Анатолий. — Но нашей самой любимой темой оставались перспективные водолазные системы».

Криогенный водолазный комплекс (КВК) А) Водолазная бортовая криогенная станция (БКС-2). 1 — криогенный блок (БК), 2 — пульт контроля и управления (ПКУ, на снимке вверху), 3 — водолазный шланг, 4 — плавсредство. Б) Легководолазная станция «МАКС-1». 1 — БК, 2 — балластная емкость, 3 — водолазный шланг, 4 — основание. В) Буксируемый аппарат «ЮГ-7м». 1 — БК, 2 — аппарат. Г) Система заправки. 1 — БК, 2 — АКДА-2, 3 — сосуды Дьюара.

Закрытый и открытый цикл

В лаборатории был разработан автономный криогенный дыхательный аппарат замкнутого цикла дыхания АКДА-1, который обеспечивал дыхание человека в загазованной среде или при погружениях на небольшие глубины. Придумать более простую конструкцию было просто невозможно. Аппарат имел два регенератора, пористую насадку, пропитанную жидким кислородом, дыхательный мешок и загубник. При выдохе газ поступал во влагонакопитель, а затем в регенератор, где охлаждался за счет испарения жидкого кислорода. Углекислый газ в выдыхаемом воздухе вымерзал, никаких химических поглотителей не требовалось. Пройдя через второй регенератор, газ нагревался и попадал в дыхательный мешок. При вдохе он вновь проходил через регенераторы, а затем, очищенный от углекислоты и увлажненный во влагонакопителе, поступал к загубнику. Аппарат весом 3 кг обеспечивал дыхание в течение 30 минут. Для работы под водой к дыхательному мешку подсоединялся через редуктор баллон с азотом, что обеспечивало необходимое снижение концентрации кислорода в смеси.

Как устроен криоланг АКДА-2 Аппарат состоит из двухстенного баллона 1, выполненного в виде сосуда Дьюара с экранно-вакуумной изоляцией 2 и заправочной горловины 3. Внутри баллона, в верхней и нижней части, установлены криогенные разделители фаз 4 с насадками из пористого никеля (диаметр пор 6−10 мкм), которые обеспечивают отбор жидкого воздуха при любом положении аппарата под водой. Для испарения и подогрева жидкого воздуха в аппарате предусмотрены теплообменники 5,6,7 и 8. Для регулирования рабочего давления и подачи воздуха для дыхания установлены автоматический клапан 9, вентиль резерва 10, предохранительный клапан 11 и легочный автомат 12. После заправки методом перелива горловина закрывается завинчивающейся пробкой; за счет небольших теплопритоков из окружающей среды давление внутри баллона поднимается. При включении клапана легочного автомата 12 жидкий воздух поступает из разделителей фаз 4 последовательно в теплообменники 8,5 и 6, где происходит его испарение и подогрев. Тепло в теплообменнике 5 передается жидкому воздуху, что вызывает рост давления в баллоне. Подогретый в теплообменнике 6 воздух через автоматический клапан 9 поступает в легочный автомат. При достижении в баллоне 1 рабочего давления клапан 9 перекрывает подачу воздуха через теплообменники 5 и 6, и дальнейшая подача воздуха к легочному автомату происходит только через теплообменник 8. Аппарат готов к работе. После расходования жидкого воздуха в аппарате остается резервный (около 0,5 кг), так как разделители фаз установлены не у самых днищ. Пористые насадки перестают смачиваться жидкостью, возникает сопротивление дыханию: газовая фаза из-за малого размера пор плохо проходит через насадки. В этом случае водолаз устанавливает вентиль 10 в положение «Резерв», и воздух начинает поступать из баллона напрямую через теплообменник 7. Уровень жидкого воздуха контролируется магнитным поплавком и набором герконов.

А вот при конструировании аппарата открытого цикла дыхания АКДА-2 конструкторы столкнулись с проблемой. Дело в том, что жидкий воздух представляет собой смесь жидких азота (79%) и кислорода (21%), температуры кипения которых отличаются. Азот кипит при более низкой температуре, поэтому в газовой фазе содержание кислорода составляет всего около 7%, и использовать ее для дыхания нельзя. Нужно забирать из сосуда жидкий воздух, испарять его (газифицировать) с помощью теплообменников и подавать для дыхания к легочному автомату, причем при любом положении сосуда Дьюара. «В харьковских аппаратах для этого использовались качающиеся на сильфонах заборные патрубки и подвижный гравитационный клапан, — говорит Анатолий. — Патрубки во время движения постукивали по стенкам сосуда изнутри, что нервировало водолазов, поэтому мы использовали другое решение. Я 'подсмотрел' его у конструкторов космической техники, которые для подвода топлива из баков к двигателям в условиях невесомости используют капиллярный эффект, устанавливая на топливозаборниках специальные 'губки'. Эксперименты с водой и войлоком показали работоспособность концепции, а для работы с жидким воздухом в итоге был выбран пористый никель с размерами пор 6−10 мкм». Насадки из пористого никеля работали как разделители фаз — они за счет смачиваемости отбирали жидкий воздух, а газовую фазу не пропускали. Две такие насадки в верхней и нижней частях баллона обеспечивали подачу воздуха при любом положении водолаза. Такая система позволила значительно упростить аппарат, оставив только два клапана и убрав редуктор (в АК-5 использовались редуктор и восемь клапанов), что положительно сказалось на его надежности.

Легководолазная станция С помощью станции «МАКС-1» осуществлялись подъем и спуск водолазов, рабочего инструмента, питание воздухом и продувка небольших понтонов и балластных емкостей. Отсутствие шлангов, связывающих водолазов с плавсредствами, и габаритных дыхательных аппаратов за спиной водолаза делало возможным проведение подводных работ в труднодоступных местах. Конструкция станции: 1 — блок хранения, 1 — компенсатор плавучести, 3 — теплоизолированные емкости, 4 — верхний колпак с приборами и рукоятками управления, 5 — нижний колпак с теплообменной аппаратурой, 6 — шланги для подачи дыхательной смеси и горячей воды.

Плюсы и минусы

Первыми оценили новые аппараты водолазы Михаил Боргуль и Владимир Бернатович. По отзывам испытателей, криоланги не только не уступали обычным аквалангам по простоте и удобству эксплуатации, но и превосходили их по многим параметрам. Аппарат заправлялся жидким воздухом простым переливом из сосудов Дьюара, при этом можно было легко и быстро обеспечить любую концентрацию кислорода. Анатолий Витюк вспоминает: «Мы просто ставили сосуд Дьюара на весы и по весу смешивали необходимые количества жидких газов. Занимало это считанные минуты, но для непосвященных выглядело как алхимические эксперименты — с кипящим воздухом и клубами пара». Еще одним важным достоинством криолангов было то, что в жидком воздухе гарантированно отсутствовали углекислота и угарный газ. При заправке обычных аквалангов для очистки воздуха от этих газов используются специальные фильтры, поскольку под давлением они могут быть смертельны для человека: известен случай, когда Жак-Ив Кусто и его напарник Фредерик Дюма едва не погибли во время погружения в августе 1946 года, из-за того что в баллоны попал угарный газ от выхлопа двигателя компрессора.

Аппарат был очень компактным и легким: скажем, двухбаллонный акваланг имеет объем 14 л и весит более 25 кг, а криоланг с таким же запасом воздуха — 3 л и 4 кг. Разумеется, при погружениях с аквалангом вес на воздухе не играет особой роли, потому что все равно приходится брать множество грузов для компенсации плавучести гидрокостюма. С этой точки зрения небольшой вес криоланга — скорее минус (требуется брать больше грузов), а вот компактность очень полезна при погружениях в тесном пространстве (например, на затонувшие объекты).

Вопреки широко распространенному заблуждению, температура подаваемого из криоланга для дыхания воздуха была не ниже, а выше, чем у акваланга. «Дело в том, что в аквалангах происходит адиабатическое расширение газа, приводящее к его охлаждению, — объясняет Анатолий. — Воздух просто не успевает нагреться до температуры окружающей среды, что не только неприятно, но может приводить даже к обледенению конструкции. Лишь в некоторых моделях 'морозостойких' редукторов и легочных автоматов предусмотрены теплообменники, но все равно температура подаваемого воздуха на 5−7° ниже температуры окружающей среды. У нашего криоланга редуктора не было, а развитые теплообменники были обязательной частью конструкции, поэтому температура подаваемого воздуха отличалась от температуры воды всего на 2−3°. Мы эксплуатировали аппараты много лет в самых разных условиях, и я не помню ни одного случая обмерзания».

Системы стабилизации рабочего давления Одной из ключевых технологий криогенных дыхательных систем была система стабилизации рабочего давления. Для вертикально-ориентированных бортовых блоков хорошо зарекомендовали себя испарительные системы замкнутого типа (1), особенно с теплоизолирующей плавающей перегородкой (2). Она быстро устанавливала и регулировала рабочее давление за счет неравновесного температурного состояния паровой и жидкостной фаз. В этом случае жидкий воздух не разогревается и не сбрасывается в окружающую среду. Такие системы применялись в легководолазной станции «МАКС-1» и буксируемом подводном аппарате «ЮГ-7м». В газобаллонной системе стабилизации (3) регулирование рабочего давления осуществлялось за счет подачи инертного газа в паровую фазу из баллона через редуктор. Такая система позволяла очень быстро регулировать рабочее давление с высокой точностью, но имела высокую стоимость.

Впрочем, был у криоланга и один минус. Из-за слабой теплоизоляции баллона примерно за сутки весь воздух улетучивался, и заправлять его следовало непосредственно перед погружением. Но с учетом того, что заправка занимала всего пару минут, это не составляло особой проблемы.

Десять лет успеха

В 1980 году группа разработчиков криоланга перешла в Южный центр АН УССР, где была организована лаборатория подводных исследований. Там группа из четырех инженеров и пяти водолазов создала водолазный криогенный комплекс, который в дальнейшем стал чрезвычайно успешным. «На протяжении десяти лет все научные экспедиции Южного центра по подводным биологическим, химическим и геологическим исследованиям, картографированию морского дна и поиску затонувших объектов обеспечивались только нашими системами», — вспоминает Анатолий.

Интересно, что даже с чисто экономической точки зрения криоланг существенно выгоднее, чем обычный акваланг на сжатом воздухе. Для легких сосудов Дьюара затраты на транспортировку меньше, а меры безопасности проще, чем для тяжелых баллонов высокого давления. В 1980-х килограмм жидкого воздуха обходился в 10−20 раз дешевле, чем килограмм сжатого до 200 атм. (4−8 копеек против 60−80 копеек). В настоящее время цена на килограмм жидкого кислорода меньше цены на сжатый газообразный кислород в 5 раз, а для азота это соотношение и того выше — почти в 10 раз. Производительность ожижителей выше производительности компрессоров (при сходных габаритах) в несколько раз, а запасы жидкого воздуха можно готовить заранее и хранить в специальных термоизолированных цистернах (для сжатого воздуха это намного опаснее), и доставлять на место проведения погружений в легких сосудах Дьюара при атмосферном давлении. Правда, стоимость ожижителей намного выше стоимости компрессоров, но со временем эта разница может окупиться.

Основным элементом комплекса был криогенный блок (БК) — цилиндрический сосуд с большим запасом (22−24 кг) жидкой дыхательной смеси. БК имел экранно-вакуумную изоляцию, в нижней части располагалась теплообменная аппаратура для газификации и подогрева рабочей смеси, в верхней — вентили управления, заправочная горловина и система стабилизации рабочего давления. Заправка БК из стандартных сосудов Дьюара занимала около 5 минут, пуск (увеличение давления до рабочего) — около 3 минут. БК имел быстроразъемное соединение для подключения легочных автоматов и был универсален — мог использоваться как система подачи дыхательной смеси с борта, с берега, хранения жидких смесей или заправки легких автономных аппаратов АКДА-2. БК также мог устанавливаться в качестве источника дыхательной смеси на небольшом буксируемом подводном аппарате мокрого типа «ЮГ-7м», который разработали в лаборатории для исследований морского дна, поиска и осмотра затонувших объектов. Последним элементом комплекса была легководолазная станция «МАКС-1», оснащенная телефонной связью.

За десять лет конструкция была отработана почти до совершенства. При развитии соответствующей инфраструктуры этот аппарат вполне мог бы стать серьезным конкурентом акваланга. «У криоланга есть, разумеется, своя специфика, — считает Анатолий Витюк. — Но в целом его использование ничуть не более сложно, чем обычного акваланга. Я уверен, что он имел все шансы на успех». Но судьба перспективного технического решения сложилась иначе. В 1990 году началась перестройка, у лаборатории подводных исследований, которая все эти годы существовала на самофинансировании, просто не осталось заказчиков, и ее расформировали.

Может быть, конструкторы в будущем вновь «изобретут» криоланг, как это произошло с ребризерами?

Page 2

Говорят, что они были сложными, громоздкими, тяжелыми и ненадежными. Еще говорят, что, поскольку газ в них хранился в жидком виде, вдыхаемый воздух был очень холодным и у аппаратов часто обмерзали редукторы. Еще утверждают, что они были экономически невыгодными. И все это не соответствует действительности.

Жизнь Анатолия Витюка, поступившего в 1969 году в Одесский технологический институт холодильной промышленности (ОТИХП), изменила заметка в иностранном научном журнале. В ней упоминался перспективный подход к конструированию дыхательного аппарата, в котором воздух хранился не в толстостенных баллонах высокого давления, а в легких и компактных сосудах Дьюара. Это позволяло увеличить время автономной работы в три раза и значительно снизить массу и габариты аппаратов. «Я увлекался подводным плаванием с аквалангом, закончил курсы ДОСААФ, — вспоминает Анатолий. — Приходилось постоянно таскать тяжелые баллоны, и я тогда подумал — почему бы не разработать такой аппарат? Как известно, лень — двигатель прогресса. Это и предопределило тему моих диплома и диссертации, а также дальнейших работ».

Немного истории

Первые попытки создания криогенных дыхательных аппаратов относятся к началу XX века. Тогда в Германии (1905) и в России (1911) были предложены подобные аппараты для горноспасательных работ в шахтах (низкая температура жидкого кислорода к тому же позволяла снизить температуру вдыхаемого газа, что уменьшало вероятность перегрева). Криогенные аппараты для подводных погружений начали разрабатываться в конце 1960-х. Американские и французские инженеры планировали применять криоланги при обслуживании морских буровых платформ. В СССР первые аппараты были разработаны и изготовлены в ХФТИНТ. По заказу военных там создавали криогенные аппараты с замкнутым циклом дыхания с использованием жидкого кислорода и азота и газообразного гелия, причем состав смеси регулировался в зависимости от глубины без всякой электроники — на основе зависимости температуры кипения газа от давления. В Харькове были сконструированы и более простые в использовании гражданские аппараты с открытой схемой дыхания — криоланги АК-3 и АК-5, опытная партия последних была передана в середине 1970-х в Аварийно-спасательную службу Киева для испытаний.

В 1974 году Анатолий Витюк, к тому времени уже закончивший институт, предложил организовать на базе кафедры криогенной техники, которую возглавлял профессор Вячеслав Андреевич Наер, новую лабораторию криогенных систем жизнеобеспечения. Завкафедрой поддержал начинание, и в новой лаборатории началась работа. «За шесть лет я и мои коллеги Александр Балетов, Александр Сысоев и Николай Тешин разработали несколько моделей газотеплозащитных систем для работы при высоких температурах для пожарных и спасателей, — вспоминает Анатолий. — Но нашей самой любимой темой оставались перспективные водолазные системы».

Криогенный водолазный комплекс (КВК) А) Водолазная бортовая криогенная станция (БКС-2). 1 — криогенный блок (БК), 2 — пульт контроля и управления (ПКУ, на снимке вверху), 3 — водолазный шланг, 4 — плавсредство. Б) Легководолазная станция «МАКС-1». 1 — БК, 2 — балластная емкость, 3 — водолазный шланг, 4 — основание. В) Буксируемый аппарат «ЮГ-7м». 1 — БК, 2 — аппарат. Г) Система заправки. 1 — БК, 2 — АКДА-2, 3 — сосуды Дьюара.

Закрытый и открытый цикл

В лаборатории был разработан автономный криогенный дыхательный аппарат замкнутого цикла дыхания АКДА-1, который обеспечивал дыхание человека в загазованной среде или при погружениях на небольшие глубины. Придумать более простую конструкцию было просто невозможно. Аппарат имел два регенератора, пористую насадку, пропитанную жидким кислородом, дыхательный мешок и загубник. При выдохе газ поступал во влагонакопитель, а затем в регенератор, где охлаждался за счет испарения жидкого кислорода. Углекислый газ в выдыхаемом воздухе вымерзал, никаких химических поглотителей не требовалось. Пройдя через второй регенератор, газ нагревался и попадал в дыхательный мешок. При вдохе он вновь проходил через регенераторы, а затем, очищенный от углекислоты и увлажненный во влагонакопителе, поступал к загубнику. Аппарат весом 3 кг обеспечивал дыхание в течение 30 минут. Для работы под водой к дыхательному мешку подсоединялся через редуктор баллон с азотом, что обеспечивало необходимое снижение концентрации кислорода в смеси.

Как устроен криоланг АКДА-2 Аппарат состоит из двухстенного баллона 1, выполненного в виде сосуда Дьюара с экранно-вакуумной изоляцией 2 и заправочной горловины 3. Внутри баллона, в верхней и нижней части, установлены криогенные разделители фаз 4 с насадками из пористого никеля (диаметр пор 6−10 мкм), которые обеспечивают отбор жидкого воздуха при любом положении аппарата под водой. Для испарения и подогрева жидкого воздуха в аппарате предусмотрены теплообменники 5,6,7 и 8. Для регулирования рабочего давления и подачи воздуха для дыхания установлены автоматический клапан 9, вентиль резерва 10, предохранительный клапан 11 и легочный автомат 12. После заправки методом перелива горловина закрывается завинчивающейся пробкой; за счет небольших теплопритоков из окружающей среды давление внутри баллона поднимается. При включении клапана легочного автомата 12 жидкий воздух поступает из разделителей фаз 4 последовательно в теплообменники 8,5 и 6, где происходит его испарение и подогрев. Тепло в теплообменнике 5 передается жидкому воздуху, что вызывает рост давления в баллоне. Подогретый в теплообменнике 6 воздух через автоматический клапан 9 поступает в легочный автомат. При достижении в баллоне 1 рабочего давления клапан 9 перекрывает подачу воздуха через теплообменники 5 и 6, и дальнейшая подача воздуха к легочному автомату происходит только через теплообменник 8. Аппарат готов к работе. После расходования жидкого воздуха в аппарате остается резервный (около 0,5 кг), так как разделители фаз установлены не у самых днищ. Пористые насадки перестают смачиваться жидкостью, возникает сопротивление дыханию: газовая фаза из-за малого размера пор плохо проходит через насадки. В этом случае водолаз устанавливает вентиль 10 в положение «Резерв», и воздух начинает поступать из баллона напрямую через теплообменник 7. Уровень жидкого воздуха контролируется магнитным поплавком и набором герконов.

А вот при конструировании аппарата открытого цикла дыхания АКДА-2 конструкторы столкнулись с проблемой. Дело в том, что жидкий воздух представляет собой смесь жидких азота (79%) и кислорода (21%), температуры кипения которых отличаются. Азот кипит при более низкой температуре, поэтому в газовой фазе содержание кислорода составляет всего около 7%, и использовать ее для дыхания нельзя. Нужно забирать из сосуда жидкий воздух, испарять его (газифицировать) с помощью теплообменников и подавать для дыхания к легочному автомату, причем при любом положении сосуда Дьюара. «В харьковских аппаратах для этого использовались качающиеся на сильфонах заборные патрубки и подвижный гравитационный клапан, — говорит Анатолий. — Патрубки во время движения постукивали по стенкам сосуда изнутри, что нервировало водолазов, поэтому мы использовали другое решение. Я 'подсмотрел' его у конструкторов космической техники, которые для подвода топлива из баков к двигателям в условиях невесомости используют капиллярный эффект, устанавливая на топливозаборниках специальные 'губки'. Эксперименты с водой и войлоком показали работоспособность концепции, а для работы с жидким воздухом в итоге был выбран пористый никель с размерами пор 6−10 мкм». Насадки из пористого никеля работали как разделители фаз — они за счет смачиваемости отбирали жидкий воздух, а газовую фазу не пропускали. Две такие насадки в верхней и нижней частях баллона обеспечивали подачу воздуха при любом положении водолаза. Такая система позволила значительно упростить аппарат, оставив только два клапана и убрав редуктор (в АК-5 использовались редуктор и восемь клапанов), что положительно сказалось на его надежности.

Легководолазная станция С помощью станции «МАКС-1» осуществлялись подъем и спуск водолазов, рабочего инструмента, питание воздухом и продувка небольших понтонов и балластных емкостей. Отсутствие шлангов, связывающих водолазов с плавсредствами, и габаритных дыхательных аппаратов за спиной водолаза делало возможным проведение подводных работ в труднодоступных местах. Конструкция станции: 1 — блок хранения, 1 — компенсатор плавучести, 3 — теплоизолированные емкости, 4 — верхний колпак с приборами и рукоятками управления, 5 — нижний колпак с теплообменной аппаратурой, 6 — шланги для подачи дыхательной смеси и горячей воды.

Плюсы и минусы

Первыми оценили новые аппараты водолазы Михаил Боргуль и Владимир Бернатович. По отзывам испытателей, криоланги не только не уступали обычным аквалангам по простоте и удобству эксплуатации, но и превосходили их по многим параметрам. Аппарат заправлялся жидким воздухом простым переливом из сосудов Дьюара, при этом можно было легко и быстро обеспечить любую концентрацию кислорода. Анатолий Витюк вспоминает: «Мы просто ставили сосуд Дьюара на весы и по весу смешивали необходимые количества жидких газов. Занимало это считанные минуты, но для непосвященных выглядело как алхимические эксперименты — с кипящим воздухом и клубами пара». Еще одним важным достоинством криолангов было то, что в жидком воздухе гарантированно отсутствовали углекислота и угарный газ. При заправке обычных аквалангов для очистки воздуха от этих газов используются специальные фильтры, поскольку под давлением они могут быть смертельны для человека: известен случай, когда Жак-Ив Кусто и его напарник Фредерик Дюма едва не погибли во время погружения в августе 1946 года, из-за того что в баллоны попал угарный газ от выхлопа двигателя компрессора.

Аппарат был очень компактным и легким: скажем, двухбаллонный акваланг имеет объем 14 л и весит более 25 кг, а криоланг с таким же запасом воздуха — 3 л и 4 кг. Разумеется, при погружениях с аквалангом вес на воздухе не играет особой роли, потому что все равно приходится брать множество грузов для компенсации плавучести гидрокостюма. С этой точки зрения небольшой вес криоланга — скорее минус (требуется брать больше грузов), а вот компактность очень полезна при погружениях в тесном пространстве (например, на затонувшие объекты).

Вопреки широко распространенному заблуждению, температура подаваемого из криоланга для дыхания воздуха была не ниже, а выше, чем у акваланга. «Дело в том, что в аквалангах происходит адиабатическое расширение газа, приводящее к его охлаждению, — объясняет Анатолий. — Воздух просто не успевает нагреться до температуры окружающей среды, что не только неприятно, но может приводить даже к обледенению конструкции. Лишь в некоторых моделях 'морозостойких' редукторов и легочных автоматов предусмотрены теплообменники, но все равно температура подаваемого воздуха на 5−7° ниже температуры окружающей среды. У нашего криоланга редуктора не было, а развитые теплообменники были обязательной частью конструкции, поэтому температура подаваемого воздуха отличалась от температуры воды всего на 2−3°. Мы эксплуатировали аппараты много лет в самых разных условиях, и я не помню ни одного случая обмерзания».

Системы стабилизации рабочего давления Одной из ключевых технологий криогенных дыхательных систем была система стабилизации рабочего давления. Для вертикально-ориентированных бортовых блоков хорошо зарекомендовали себя испарительные системы замкнутого типа (1), особенно с теплоизолирующей плавающей перегородкой (2). Она быстро устанавливала и регулировала рабочее давление за счет неравновесного температурного состояния паровой и жидкостной фаз. В этом случае жидкий воздух не разогревается и не сбрасывается в окружающую среду. Такие системы применялись в легководолазной станции «МАКС-1» и буксируемом подводном аппарате «ЮГ-7м». В газобаллонной системе стабилизации (3) регулирование рабочего давления осуществлялось за счет подачи инертного газа в паровую фазу из баллона через редуктор. Такая система позволяла очень быстро регулировать рабочее давление с высокой точностью, но имела высокую стоимость.

Впрочем, был у криоланга и один минус. Из-за слабой теплоизоляции баллона примерно за сутки весь воздух улетучивался, и заправлять его следовало непосредственно перед погружением. Но с учетом того, что заправка занимала всего пару минут, это не составляло особой проблемы.

Десять лет успеха

В 1980 году группа разработчиков криоланга перешла в Южный центр АН УССР, где была организована лаборатория подводных исследований. Там группа из четырех инженеров и пяти водолазов создала водолазный криогенный комплекс, который в дальнейшем стал чрезвычайно успешным. «На протяжении десяти лет все научные экспедиции Южного центра по подводным биологическим, химическим и геологическим исследованиям, картографированию морского дна и поиску затонувших объектов обеспечивались только нашими системами», — вспоминает Анатолий.

Интересно, что даже с чисто экономической точки зрения криоланг существенно выгоднее, чем обычный акваланг на сжатом воздухе. Для легких сосудов Дьюара затраты на транспортировку меньше, а меры безопасности проще, чем для тяжелых баллонов высокого давления. В 1980-х килограмм жидкого воздуха обходился в 10−20 раз дешевле, чем килограмм сжатого до 200 атм. (4−8 копеек против 60−80 копеек). В настоящее время цена на килограмм жидкого кислорода меньше цены на сжатый газообразный кислород в 5 раз, а для азота это соотношение и того выше — почти в 10 раз. Производительность ожижителей выше производительности компрессоров (при сходных габаритах) в несколько раз, а запасы жидкого воздуха можно готовить заранее и хранить в специальных термоизолированных цистернах (для сжатого воздуха это намного опаснее), и доставлять на место проведения погружений в легких сосудах Дьюара при атмосферном давлении. Правда, стоимость ожижителей намного выше стоимости компрессоров, но со временем эта разница может окупиться.

Основным элементом комплекса был криогенный блок (БК) — цилиндрический сосуд с большим запасом (22−24 кг) жидкой дыхательной смеси. БК имел экранно-вакуумную изоляцию, в нижней части располагалась теплообменная аппаратура для газификации и подогрева рабочей смеси, в верхней — вентили управления, заправочная горловина и система стабилизации рабочего давления. Заправка БК из стандартных сосудов Дьюара занимала около 5 минут, пуск (увеличение давления до рабочего) — около 3 минут. БК имел быстроразъемное соединение для подключения легочных автоматов и был универсален — мог использоваться как система подачи дыхательной смеси с борта, с берега, хранения жидких смесей или заправки легких автономных аппаратов АКДА-2. БК также мог устанавливаться в качестве источника дыхательной смеси на небольшом буксируемом подводном аппарате мокрого типа «ЮГ-7м», который разработали в лаборатории для исследований морского дна, поиска и осмотра затонувших объектов. Последним элементом комплекса была легководолазная станция «МАКС-1», оснащенная телефонной связью.

За десять лет конструкция была отработана почти до совершенства. При развитии соответствующей инфраструктуры этот аппарат вполне мог бы стать серьезным конкурентом акваланга. «У криоланга есть, разумеется, своя специфика, — считает Анатолий Витюк. — Но в целом его использование ничуть не более сложно, чем обычного акваланга. Я уверен, что он имел все шансы на успех». Но судьба перспективного технического решения сложилась иначе. В 1990 году началась перестройка, у лаборатории подводных исследований, которая все эти годы существовала на самофинансировании, просто не осталось заказчиков, и ее расформировали.

Может быть, конструкторы в будущем вновь «изобретут» криоланг, как это произошло с ребризерами?

www.popmech.ru

Что такое жидкий кислород: общая информация :

Кислород – самый распространенный элемент на планете. Он присутствует в воде, земной коре, воздухе и в организмах живых существ, активно участвуя во многих обменных процессах. В природе он обычно существует в виде газа, а в промышленности часто используется в качестве жидкости. Как ведет себя жидкий кислород? Какими свойствами он обладает и где используется?

Газ кислород

Кислород – один из важнейших элементов на планете. Он участвует в процессе дыхания, в метаболизме живых организмов, а также в круговороте веществ в биосфере. Кроме того, он способствует гниению и разложению органических остатков.

В нормальных условиях он является бесцветным газом, который не имеет вкуса и запаха. Он тяжелее воздуха и с трудом растворяется в воде. В химическом плане он очень активен и способен образовывать соединения практически со всеми элементами.

В свободном состоянии в виде молекул О2, состоящих из двух атомов оксигена, он находится в атмосфере. Благодаря такому строению элемент также называется «дикислородом», но он может существовать и в других вариациях. При определенных условиях его атомы могут образовывать «трикислород» с молекулой О3, которая представляет собой голубой газ озон со специфическим запахом.

В атмосфере содержание кислорода составляет примерно 21 % по массе, в земной коре его доля значительно выше и составляет около 47 % по массе. Элемент входит в состав более полутора тысяч разнообразных пород и минералов, большая часть из которых являются силикатами. Там он присутствует в виде соединений. В воде его содержание доходит до 85 %, и это не удивительно, ведь атомы оксигена и образуют воду вместе с элементом гидрогеном.

Жидкий кислород

Как и другие вещества, кислород может пребывать в различных агрегатных состояниях. Чтобы превратить газ в твердое тело или жидкость, его нужно сильно охладить. При давлении в 51 атмосферу он становится жидким уже при -119 °C. При нормальном давлении превращение происходит только при -183 °C. Охлаждаясь до температуры -220 °C, он затвердевает, образуя светло-голубые снегоподобные кристаллы.

В жидком состоянии кислород окрашивается в голубой оттенок и усиливает некоторые свойства газообразного вещества. Так, он ведет себя более агрессивно в химических реакциях, а также становится сильным парамагнетиком и может притягиваться магнитом.

Он закипает только при -183 °C, а плавится при +219 °C. Благодаря устойчивости к столь низким температурам жидкий кислород обладает криогенными свойствами и может использоваться в качестве хладагента. В нормальных условиях он быстро испаряется, превращаясь в газ. При этом он усиленно поглощает тепло и охлаждает окружающий воздух, отчего рядом с ним появляется ореол тумана. Во время испарения объем кислорода увеличивает в несколько сотен раз. Так, 1 см3 жидкости образует почти 800 см3 газа.

Химические свойства

Газообразный кислород является окислителем. Сам по себе он негорюч, но хорошо поддерживает процесс горения, а при значительной концентрации и высоких температурах является взрывоопасным.

С активными веществами (например, щелочными металлами) он может вступать в реакции даже при комнатной температуре и при обыкновенной концентрации в воздухе, образуя с ними соединения оксиды. Результат хорошо виден на многих металлах, на которых он проявляется в виде коррозии.

Жидкий кислород также обладает сильными окислительными свойствами. Многие пропитанные им вещества легко воспламеняются и горят с выделением энергии и тепла. Хлопок, бумага, дерево, уголь и некоторые другие материалы могут взрываться.

Получение

Самым распространенным и легким в получении источником кислорода является воздух. К тому же он неиссякаем и присутствует в нашей жизни повсеместно. Чтобы получить из него необходимые вещества, его сжижают, а затем разделяют на жидкий азот и кислород.

Еще один способ получения жидкости – конденсация ее из газа. Для этого достаточно опустить медный змеевик в контейнер с жидким азотом, а затем пропустить через змеевик газообразный кислород. Температура азота ниже, чем у кислорода, поэтому, проходя по медной трубке, газ будет конденсироваться и превратится в жидкость. При этом на поверхности змеевика образуется небольшой слой снега.

Применение

Способность жидкого кислорода окислять другие вещества и усиливать горение ценятся во многих сферах производства. В конце XIX – середине XX века из него изготавливали взрывчатку «Оксиликвит», которую использовали в горной промышленности для подрыва породы, а также в качестве оружия во Второй мировой войне.

Сегодня его чаще применяют в медицине, фармацевтике, в металлургии, стекольной, химической, бумажной и других видах промышленности. С его помощью получают различные полезные соединения, например окись титана, которая участвует в производстве лакокрасочных изделий, бумаги и пластмасс. При изготовлении стекла он нужен для поддержания жара в печах, а также для уменьшения количества окиси азота, попадающей в атмосферу. В космической авиации жидкий кислород является одним из компонентов ракетного топлива, где он используется в качестве окислителя, а в роли самого топлива выступает водород или керосин.

В медицине и фармацевтике без него тоже не обходится. Жидкий кислород входит в состав биореакторов, а также используется в качестве добавки к ферментам. В медицине он необходим для анестезии, приготовления кислородных ванн и коктейлей, лечения или облегчения состояния при интоксикации, астме и других недугах. Здесь он чаще всего не используется напрямую в виде жидкости, а является источником газообразного кислорода.

Хранение и меры предосторожности

Жидкий кислород не возгорается и не взрывается сам по себе, он не токсичен для человека и не вреден для окружающей среды. Однако активная реакция в химических процессах, а также криогенный эффект делают его не совсем безопасным веществом.

При работе с ним нужно держать подальше смазочные, горючие и легковоспламеняющиеся материалы, а также всегда использовать перчатки и спецодежду. Кислород очень низкой температуры легко повреждает кожу и может привести к обморожению, травмам и отмиранию живых клеток. Если жидкость покрывает значительную часть тела, все может закончиться даже летальным исходом.

Технический и медицинский жидкий кислород хранят сосудах Дьюара, которые делают преимущественно из стали или алюминия. Это цилиндрические контейнеры с двойными стенками, между стенками которых располагается вакуумная полость, а также теплоизоляционные материалы. Они работают по принципу термосов, хорошо сохраняя жидкости внутри.

www.syl.ru

Жидкий воздух

Разработчики английской компании Highview Power Storage протестировали свою стационарную энергетическую установку, работа которой основана на жидком воздухе.

Первый этап в испытаниях нового оборудования CryoEnergy System (CES) проходил в течение целых девяти месяцев. Назначение подобной установка — помощь любому типу тепловой электростанции во время повышения показателей энергопотребления, так как именно, тогда необходимо сглаживание нагрузок на главное оборудование.

Принцип, заложенный в основе работы CES, вполне прост и понятен. В то время, когда в сети  происходит спад, все лишнее электричество тратится на то, чтобы охлаждать имеющийся воздух до температуры в —196 градусов, тем самым превращая его в жидкость, которая будет находиться в теплоизолированной ёмкости. Если энергия снова потребовалась, то жидкий воздух подогревается за счет тепла обычного атмосферного воздуха. В это время он начинает кипеть и резко расширяться в целых 700 раз. Воздух, находящийся под высоким давлением воздух начинает вращать турбину, а она уже вал генератора.

В этой идее нет ничего нового или особенного, но именно инженерам Highview Power Storage удалось воплотить её в жизнь, так опытная установка CES мощность 300 кВт была успешно установлена на одной из электростанций SSE и включена в национальную энергосеть Великобритании.

Создателями CES было отмечено, что в случае нагрева энергоносителя обыкновенным воздухом их генератор возвращал в сеть всего лишь 50% от всей энергии, затраченной на процессы сжижения воздуха. Но в случае использования тепла от любых промышленных объектов (сейчас это было тепло от установок самой электростанции), КПД можно легко поднять до 70%.

Этот жидкий воздух для установки пока производился не на месте проведения исследований, однако уже сейчас Highview начало монтировать установку, которая будет отвечать за этот процесс внутри самой CES. Полностью рабочая установка вскоре начнет тестироваться во втором круге испытаний.

На выходе CES дает чистый сильно охлажденный воздух, который разработчики планируют использовать при необходимости кондиционирования промышленных объектов и самого оборудования, а также компьютеров, установленных в дата-центрах. Помимо этого его можно легко применить для снижения расходов на энергию, которая будет использоваться для сжижения воздуха в самой CES.

Данные, опубликованные Gizmag, сообщают, что уже в конце 2012 года компания Highview должна запустить готовую коммерческую энергетическую систему с производимым жидким воздухом с мощностью в 3,5 мегаватта, а уже к 2014 году производительность системы должна быть увеличена до 8-10 мегаватт.

Английские ученые придумали также еще одну подобную систему под названием CryoGenset (CGS), которая буде работать как CES, однако производимый жидкий воздух или азот, который будет использован для хранения энергии, будет разводиться по различным промышленным объектам. Получается, что процесс сжижения будет должен происходить в одном месте, а вся транспортировка будет осуществляться в цистернах по необходимости.

Сейчас выдвигается точка зрения, что CES и CGS должны стать хорошей альтернативой для других способов буферного хранения электроэнергии в промышленных объемах. Так аккумулирующие гидроэлектростанции берут верх над жидким воздухом в КПД, однако нуждаются в огромных водохранилищах, которые требует много места и материальных вложений.

А при сравнении CES с системами, основанными на аккумуляторных батареях, то снова жидкий воздух проигрывает в эффективности, но в данный момент не учитывается тот фактор, что затраты на подходящие в этой ситуации батареи в четыре раза превышают затраты на жидкий воздух. Сравните 4000 долларов за 1 киловатт мощности  и 1000 долларов за тот же киловатт у CES.

Получается, что криогенный комплекс имеет место в мире благодаря относительной дешевизне, а также скорости монтирования и компактности установки.

zaryad.com


Смотрите также