Токи фуко что это такое


Вихревые токи – токи Фуко, что это такое и где они используются

Вихревые или еще так называемые цикличные токи могут нести в себе помимо вреда еще и пользу. С одной стороны, вихревые токи - это непосредственная причина потерь электроэнергии в проводнике либо же катушке. В то же самое время на этом эффекте построены современные индукционные печи, так что польза от таких токов есть. Давайте поговорим о пользе и вреде немного по подробней.

yandex.ru

Краткое определение

Для начала давайте дадим определение озвученному явлению. Вихревые токи - это такие токи, которые начинают протекать по причине воздействия переменного магнитного поля. При этом может изменяться не само поле, а положение проводника в этом поле, то есть если проводник начнет перемещаться в статичном поле, то в нем все равно образуются токи Фуко.

И траекторию протекания таких токов определить невозможно. Известно лишь то, что ток проходит в том месте, где сопротивление минимально.

Как открыли это явление

Изначально вихревые токи были зафиксированы в 1824 году ученым Д.А. Араго во время проведения следующего опыта:

На одной оси были смонтированы медный диск и магнитная стрелка, диск располагался внизу, а стрелка несколько выше. Так вот, когда стрелку вращали, то медный диск также начинал вращаться, так как протекающие токи формировали магнитное поле, которое и вступало во взаимодействие с магнитной стрелкой.

Наблюдаемый эффект получил название – явление Араго.

yandex.ru

По истечении нескольких лет этот вопрос стал изучать Максвелл Фарадей, который как раз открыл закон электромагнитной индукции. Так вот, согласно открытому закону было сделано предположение, что магнитное поле оказывает непосредственное воздействие на атомарную решетку проводника.

И образующийся в результате данного воздействия электрический ток, всегда формирует магнитное поле во всем проводнике.

А подробно описал вихревые токи уже экспериментатор Фуко, именно поэтому второе название вихревых токов – токи Фуко. С историей немного познакомились, теперь давайте узнаем природу вихревых токов.

Природа вихревых токов

Замкнутые циклические токи могут образоваться в проводнике только в том варианте, когда магнитное поле, в котором находится проводник, имеет нестабильную структуру, то есть имеет вращение или изменяется со временем.

Из этого следует, что сила вихревых токов имеет прямую связь со скоростью изменения магнитного потока, проходящего через проводник.

По общепринятой теории электроны перемещаются в проводнике линейным образом из-за разности потенциалов, а это значит, что ток имеет прямое направление.

yandex.ru

Токи Фуко ведут себя совершенно по-другому и образуют вихревой замкнутый контур прямо в проводнике. При этом данные токи способны на взаимодействие с магнитным полем, которое их и создало.

Проводя исследование этих токов, ученый Ленц сделал вывод, что сгенерированное вихревыми токами магнитное поле не позволяет магнитному потоку, который и создал эти токи, измениться. При этом направленность силовых линий вихревого тока идентично вектору направления индукционного тока.

Вихревые токи и их вред

Давайте вспомним, как выглядит обычный трансформатор.

Так вот, если вы внимательно посмотрите на сердечник, то вы увидите, что он собран из отдельных пластин. А вам не кажется, что гораздо проще его было выполнить цельным?

Именно таким «дроблением» пытаются максимально снизить негативное воздействие токов Фуко. Ведь вихревые токи нагревают тело, в котором они протекают.

Как же они появляются в трансформаторе? Его работа и основана на принципах взаимодействия магнитных полей переменного характера, а как мы уже знаем переменное поле неизбежно порождает вихревые токи.

yandex.ru

Получается, что вихревой ток нагревает сердечник. А нагрев ведет к снижению КПД и сильный перегрев приведет к оплавлению изоляции, а значит разрушению трансформатора.

Как снижают потери

Данные потери могут быть описаны следующей формулой:

Как вы знаете, верно следующее утверждение: проводник с маленьким сечением обладает большим сопротивлением, а чем больше сопротивление проводника, тем меньший ток проходит через него.

Именно поэтому сердечник выполнен из цельного куска стали, а не собран из тонких пластин, которые изолированы друг от друга окалиной или слоем лака. Такой способ сборки сердечника максимально уменьшает потери в сердечнике, то есть сводят вихревые токи до минимума.

Полезное использование вихревых токов

Данные токи не только несут негатив. Их давно научились использовать с пользой. Так, например, свойства вихревых токов используются в индукционных счетчиках. Данные токи замедляют вращение алюминиевого диска, который вращается под действием магнитного поля.

Так же создание индукционных сталеплавильных печей оказало несоизмеримый вклад в развитие всей современной индустрии производства стали.

yandex.ru

Такие печи работают следующим образом: металл, который будут подвергать плавлению, помещают внутрь катушки, через которую начинают пропускать ток повышенной частоты. При этом магнитное поле формирует большие токи внутри металла, и последующий нагрев расплавляет металл.

В многоквартирных домах вы сможете увидеть индукционные плитки, принцип работы которых также основан на использовании эффекта образования вихревых токов.

Заключение

Это все, что я хотел вам рассказать о вихревых токах (токах Фуко). Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!

zen.yandex.ru

Токи Фуко

Определение 1

Токами Фуко или же вихревыми токами называют обладающие индукционной природой токи, которые возникают в массивных проводниках, находящихся в переменном магнитном поле.

Замкнутые цепи вихревых токов зарождаются в глубине самого проводника. Значение электросопротивления массивного проводника представляет из себя довольно малую величину, соответственно, токи Фуко могут приобретать большие значения. Форма и свойства материала проводника, направление переменного магнитного поля и скорость изменения магнитного потока являются величинами, от которых зависит сила вихревых токов. Распределение токов Фуко в проводнике может быть крайне сложным. Количество тепла, которое излучается за 1с токами Фуко пропорционально квадрату частоты изменения магнитного поля. Исходя из закона Ленца, можно заявить, что токи Фуко протекают по таким направлениям, чтобы своим воздействием устранить вызывающую их причину. Таким образом, если проводник находится в движении в области магнитного поля, то он должен быть подвержен вызванному взаимодействием токов Фуко и магнитного поля сильному торможению.

Пример 1

Рассмотрим в качестве примера ситуацию с возникновением оков Фуко. Медный диск диаметром 5 см и толщиной 6мм падает в узком зазоре между полюсами электромагнита. Если электромагнит отключен, диск с высокой скоростью падает. Включим электромагнит. Поле должно быть довольно большим, около Т 0,5 Тл. Падение диска замедлится и будет похоже на движение в крайне вязкой среде.

Использование токов Фуко

Токи Фуко занимают важное место в процессе работы приводящегося в движение вращательного типа магнитным полем ротора асинхронного двигателя. Без них функционирование двигателя попросту будет невозможным. Токи Фуко применяют при демпфировании подвижных частей гальванометров, сейсмографов и целого списка иных устройств. Так, на подвижную часть прибора устанавливается пластинка - проводник в виде сектора. Ее вводят в промежуток между полюсами сильного постоянного магнита. При движении пластинки, в ней возникают токи Фуко, что провоцирует торможение системы. Стоит учитывать, что торможение проявляется только в случае движения секторообразного проводника. Соответственно, успокаивающий прибор такого рода не препятствует точному достижению системы состояния равновесия.

Теплота, излучающаяся токами Фуко, применяется в процессах нагрева. Таким образом, плавка металлов, в которой используются токи Фуко, является более выгодной, чем плавка при помощи иных методов разогрева. Индукционная печь, использующая такой метод, представляет собой катушку, по которой протекает ток высокой частоты и большой силы. Внутри катушки распологают проводящее тело, в котором возникают разогревающие вещество до состояния плавления вихревые токи большой интенсивности. Так происходит плавление металлов в условиях вакуума, позволяющее получать материалы высокой чистоты. При применении токов Фуко с целью обезгаживания производят прогрев внутренних металлических элементов вакуумных конструкций.

Проблемы, которые вызывают вихревые токи. Скин - эффект

Токи Фуко не всегда представляют собой полезное явление.

Определение 2

Вихревые токи - это токи проводимости, из-за чего они рассеивают часть энергии в виде джоулевой теплоты.

Такая энергия, к примеру, в роторе асинхронного двигателя, обычно изготавливаемого из ферромагнетиков, разогревает сердечники, чем ухудшает их характеристики. Чтобы избежать данного явления, сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора. Пластины устанавливают таким образом, чтобы токи Фуко были направлены поперек них. В случае малой толщины пластин вихревые токи обладают небольшой объемной плотностью. С появлением ферритов и веществ с большим магнитосопротивлением появилась возможность изготавливать сердечники сплошными.

Определение 3

Вихревые токи наводятся в проводниках, в которых протекают переменные токи. Причем токи Фуко всегда направлены таким образом, что ослабляют ток внутри провода и усиливают его около поверхности. Соответственно, изменяющийся с высокой частотой ток распределен по сечению провода неравномерно. Данное явление называется скин - эффектом (поверхностным эффектом).

По причине такого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой в качестве проводников применяют трубки. Скин - эффект может быть использован для разогрева поверхностного слоя металла, что позволяет применять данное явление в процессе закалки металла. Также стоит отметить, что, изменяя частоту поля, можно производить закалку на любой необходимой глубине.

Определение 4

Приближенные формулы, которыми может быть описан скин-эффект в однородном цилиндрическом проводнике:

RwR0=1+k43, при k

zaochnik.com

Вихревые токи Фуко: применение в промышленности — Asutpp

Детали из металла у автомобиля или разнообразных электрических устройствах, имеют способность двигаться в магнитном поле и пересекаться с силовыми линиями. Благодаря этому образовывается самоиндукция. Предлагаем рассмотреть аномальные вихревые токи фуко, потоки воздуха, их определение, применение, влияние и как уменьшить потери на вихревые токи в трансформаторе.

Из закона Фарадея следует, что изменение магнитного потока производит индуцированное электрическое поле даже в пустом пространстве.

Если металлическая пластина вставляется в это пространство, индуцированное электрическое поле приводит к появлению электрического тока в металле. Эти индуцированные токи называются вихревые токи.

Фото: Вихревые токи

Токи Фуко – это потоки, индукция которых проводится в проводящих частях разнообразных электрических приборах и машинах, блуждающие токи Фуко особенно опасны для пропуска воды или газов, т.к. их направление невозможно контролировать в принципе.

Если индуцированные встречные токи создаются изменяющимся магнитным полем, то токи вихревые будут перпендикулярны к магнитному полю, и их движение будет производиться по кругу, если данное поле однородно. Эти индуцированные электрические поля очень сильно отличаются от электростатических электрических полей точечных зарядов.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Вихри и скин-эффект

В том случае, когда возникают очень сильные вихревые токи (при высокочастотном токе), в телах плотность тока становится значительно меньше, чем на их поверхностях. Это так называемый скин эффект, его методы используются для создания специальных покрытий для проводов и в трубах, которые разрабатываются специально для вихре-токов и тестируются в экстремальных условиях.

Это доказал еще ученый Эккерт, который исследовали ЭДС и трансформаторные установки.

Схема индукционного нагрева

Принципы вихревых токов

Катушка из медной проволоки является распространенным методом для воспроизведения индукции вихревых токов. Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. Магнитные поля образуют линии вокруг провода и соединяются, образуя более крупные петли. Если ток увеличивается в одной петле, магнитное поле будет расширяться через некоторые или все из петель проволоки, которые находятся в непосредственной близости. Это наводит напряжение в соседних петлях гистерезис, и вызывает поток электронов или вихревые токи, в электропроводящем материале. Любой дефект в материале, включая изменения в толщине стенки, трещин, и прочих разрывов, может изменить поток вихревых токов.

Закон Ома

Закон Ома является одним из самых основных формул для определения электрического потока. Напряжение, деленное на сопротивление, Ом, определяет электрический ток, в амперах. Нужно помнить, что формулы для расчета токов не существует, необходимо пользоваться примерами расчета магнитного поля.

Индуктивность

Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. С увеличением тока, катушка индуцирует циркуляцию (вихревых) потоков в проводящем материале, расположенном рядом с катушкой. Амплитуда и фаза вихревых токов будет меняться в зависимости от загрузки катушки и ее сопротивления. Если поверхность или под поверхностью возникнет разрыв в электропроводном материале, поток вихревых токов будет прерван. Для его налаживания и контроля существуют специальные приборы с разной частотой каналов.

Магнитные поля

На фото показано, как вихревые электрические токи образуют магнитное поле в катушке. Катушки, в свою очередь, образуют вихревые токи в электропроводном материале, а также создавают свои собственные магнитные поля.

Магнитное поле вихревых токов

Дефектоскопия

Изменение напряжения на катушке будет влиять на материал, сканирование и исследование вихревых токов позволяет производить прибор для измерения поверхностных и подповерхностных разрывов. Несколько факторов будут влиять на то, какие недостатки могут быть обнаружены:

  1. Проводимость материала оказывает значительное воздействие на пути следования вихревых токов;
  2. Проницаемость проводящего материала также имеет огромное влияние из-за его способности быть намагниченным. Плоскую поверхность гораздо легче сканировать, чем неровную.
  3. Глубина проникновения имеет очень большое значение в контроле вихретоков. Поверхность трещины гораздо легче обнаружить, чем суб-поверхностного дефекта.
  4. Это же касается и площади поверхности. Чем меньше площадь – тем быстрее происходит образование вихревых токов.

Обнаружение контура дефектоскопом

Существуют сотни стандартных и специальных зондов, которые производятся для конкретных типов поверхностей и контуров. Края, канавки, контуры, и толщина металла вносят свой вклад в успех или провал испытаний. Катушка, которая расположена слишком близко к поверхности проводящего материала будет иметь наилучшие шансы на обнаружение разрывов. Для сложных контуров катушка вставляется в специальной блок и прикрепляется к арматуре, что позволяет пройти ток через неё и проконтролировать его состояние. Многие устройства требуют специальных формованных изделий зонда и катушки, чтобы приспособиться к неправильной форме детали. Катушка также может иметь специальную (универсальную) форму, чтобы соответствовать конструкции детали.

Уменьшаем вихревые токи

Для того чтобы уменьшить вихревые токи катушек индуктивности нужно увеличить сопротивление в этих механизмах. В частности рекомендуется использовать лицендрат и изолированные провода.

www.asutpp.ru

Что такое вихревые токи и какие меры принимают для их уменьшения

В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы. Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений. Давайте разберемся, что такое вихревые токи Фуко и как они возникают.

Краткое определение

Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.

Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Как снизить потери

Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:

Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.

Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.

Применение на практике

Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.

Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки. Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен. Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.

Наглядное применение на практике:

Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.

В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.

Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин. В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому. Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.

Материалы по теме:

samelectrik.ru

Что такое вихревые токи Фуко: природа возникновения и применение

Электромагнитная индукция (ЭИ) — очень важное явление для электротехники.

И почти всегда электромагнитную индукцию сопровождают вихревые токи.

Что они из себя представляют и как используются — вот тема данного разговора.

Природа вихревых токов

Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.

Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Что такое токи Фуко?

В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.

Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:

  1. проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
  2. относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.

Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».

Магнитное поле токов Фуко

Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:

  1. плоский круглый предмет помещается в крутящееся магнитное поле;
  2. его воздействие на деталь выражается в наведении в ней вихревых токов;
  3. токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
  4. диск начинает крутиться.

Сила вихревых токов напрямую зависит от скорости изменения магнитного потока.

Значение

Чем быстрее движется проводящее тело в поле, тем сильнее будут токи Фуко. Частота переменного тока и его амплитуда при возрастании тоже способствуют их увеличению.

При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt < 0) направление вращения меняется на противоположное. «Вихрь» зарядов в теле выбирает такую плоскость вращения, чтобы оказывать максимальное сопротивление вызывающей их силе (правило Ленца). Эта плоскость составляет прямой угол с силовыми линиями индуцирующего поля.

При этом вихревые токи сами генерируют магнитное поле, направленное против вызывающего их внешнего (индуцирующего) магнитного поля. В этом и состоит механизм взаимодействия токов Фуко с индуктором, заставившее вращаться диск в опыте Араго.

Применение

Исследуя вихревые токи, Ж. Б. Л. Фуко обнаружил, что они вызывают нагрев проводника. Это явление широко используют в технике и различных отраслях промышленности.

Вот несколько примеров:

  1. индукционная кухонная плита. Достоинство устройства состоит в экономичности: энергия тратится сугубо на нагрев посуды с пищей, сама плита остается холодной. Требуется посуда из ферромагнитных материалов, то есть таких, к которым пристает магнит. Существуют такие разновидности чугуна и нержавейки, алюминиевую же посуду делают с ферромагнитным дном;
  2. индукционный отопительный котел. Достоинства – в простоте устройства. Теплообменник представляет собой трубу (в некоторых моделях — с сердечником), обмотанную проводом. Целостность его не нарушается, как в ТЭНовых котлах, потому протечки исключены. Поверхность нагрева имеет большую площадь: в этом качестве выступает весь теплообменник (находится в поле электромагнита);
  3. индукционные печи на металлургических и прочих заводах. Сталь и другие металлы загружаются в тигель и помещаются в поле переменного магнита. Выгода в том, что энергия тратится сугубо на нагрев материала, а не тигля;
  4. дегазация металлических частей вакуумных установок. Без данной процедуры достижение полного вакуума невозможно, поскольку в арматуре и других металлических элементах содержится небольшое количество газов, в условиях вакуума понемногу выделяющихся. Для принудительной дегазации требуется нагрев, а нагреть находящийся внутри установки металлический элемент можно только бесконтактным способом. На помощь приходят ЭИ и токи Фуко;
  5. поверхностная закалка металлических изделий. Требуется для упрочнения внешнего слоя при сохранении пластичности основной части детали. Пример — шестерни. Если закалить изделие полностью, оно станет хрупким и при нагрузках сломается.

Вихревые токи в магнитопроводе

Чтобы нагреть только поверхностный слой, токи Фуко используют в сочетании со скин-эффектом. Последний состоит в снижении плотности тока вблизи оси проводящего тела и возрастании ее у поверхности, что проявляется тем сильнее, чем выше частота тока.

Объясняется скин-эффект тем, что вектор напряженности создаваемого вихревыми токами поля направлен:

  • внутри детали — против наведенной (индуцированной) ЭДС;
  • на поверхности — в одну сторону с ней.

Скин-эффект имеет место и при протекании сгенерированного электростанцией высокочастотного тока по проводам. При этом сопротивление последних значительно увеличивается, поскольку работает только поверхностный слой.

Для борьбы используют такие меры:

  • применяют плоские и полые проводники;
  • наносят на поверхность токопроводящих жил металлы с меньшим сопротивлением (серебро, золото);
  • уменьшают шероховатость проводника (сокращается путь тока в поверхностном слое).

Другой способ применения основан на взаимодействии вихревых токов с вызывающим их магнитным полем.

Как уже говорилось, индукционный ток выбирает такой путь, чтобы производимое им магнитное поле максимально противодействовало индуцирующему (правило Ленца). В результате на движущееся в магнитном поле тело с низким электрическим сопротивлением (сила вихревых токов, как и всех остальных, обратно пропорциональна сопротивлению), действует тормозящая сила.

Тормозящая силу используют для:

  • торможения диска электросчетчика (повышается точность показаний);
  • демпфирования подвижных частей сейсмографов, гальванометров и прочих приборов;
  • торможения железнодорожных составов (в некоторых конструкциях).

Вихретоковый метод (

На взаимодействии индуцирующего электромагнитного поля и создаваемого токами Фуко основан вихретоковый метод контроля деталей из проводящих материалов — металлов и их сплавов, полупроводников, графита. Метод является не только неразрушающим, но и бесконтактным. Это позволяет значительно увеличить скорость продвижения исследуемых изделий.

Суть метода:

  1. деталь помещается в переменное магнитное поле, генерируемое одной или несколькими индукционными обмотками (вихретоковым преобразователем);
  2. создаваемое токами Фуко поле анализируется измерительной катушкой.

Сопротивление материала увеличится, если в изделии имеются:

  • трещины;
  • раковины;
  • утоньшение стенки;
  • коррозия и прочие дефекты, нарушающие однородность.

Вихревые токи и создаваемое ими электромагнитное поле будут отличаться от нормы, эта информация, как и данные о положении исследуемого объекта относительно вихретокового преобразователя, определяется путем замеров на выводах катушек:

  • напряжения;
  • сопротивления.

Методом проверяют состояние широкого спектра изделий:

  • крепежных элементов;
  • роликов подшипников;
  • труб;
  • проволоки;
  • рельс;
  • корпусов атомных реакторов и многих других.

Дефектоскопия газопровода

Помимо дефектоскопии и дефектометрии метод вихретокового контроля используется в:

  • виброметрии;
  • толщинометрии (контроль вибраций);
  • структуроскопии (определение структурного состояния материала).
При протекании постоянного тока скин-эффект не наблюдается, потому его иногда используют для транспортирования большой мощности на значительные расстояния.

Потери на вихревые токи

С целью поспособствовать распространению электромагнитного поля, обмотки трансформаторов и электрических машин наматывают на сердечник (магнитопровод). Это объясняется более высоким коэффициентом магнитопроницаемости металлов в сравнении с воздухом.

К примеру, у стали этот параметр в 100 раз превышает воздушный. В сердечнике также возникают вихревые токи и здесь они нежелательны, поскольку потребляют энергию и приводят к снижению КПД устройства.

Применяют следующие способы минимизации потерь на вихревые токи:

  1. шихтовка. Сердечник собирают из тонких пластин (0,1 – 0,5 мм), электрически изолированных друг от друга лаком, окалиной или иным диэлектриком. Плоскость пластины направлена вдоль силовых линий поля. Поэтому для токов Фуко, стремящихся двигаться в перпендикулярной этим линиям плоскости, такой сердечник имеет большое сопротивление. Аналогичными свойствами обладает стержень, собранный из изолированных друг от друга отрезков отожженной проволоки. Но они должны располагаться параллельно направлению магнитного потока (силовым линиям). Таким же способом ослабляются токи Фуко в проводах — их набирают из множества переплетенных изолированных жил (литцендрат). Заодно данный прием нейтрализует скин-эффект;
  2. изготовление сердечников из ферритов — магнитомягкое железо, получаемое путем спекания порошка. Структурно и по свойствам напоминает графит (такое же хрупкое). Имеет низкое электрическое сопротивление, но высокий коэффициент магнитопроницаемости (магнитодиэлектрик). Сердечник из феррита в шихтовке не нуждается — его делают цельным;
  3. введение в материал сердечника добавок, повышающих электрическое сопротивление. Так, в сталь добавляют кремний.

Видео по теме

О том, что такое вихревые токи, в видеоролике:

В массивных телах, попавших под воздействие переменного магнитного поля, происходит тот же процесс, что и в любом проводнике — возникает электрический ток. В некоторых случаях он полезен, в других — нежелателен. Так или иначе, на явлении вихревых токов построена работа многих устройств.

Поделиться:

Нет комментариев

proprovoda.ru

Токи Фуко

Токами Фуко (или вихревыми токами) называют токи, имеющие индукционную природу, которые появляются в массивных проводниках в переменном магнитном поле. Замкнутые цепи вихревых токов появляются в глубине самого проводника. Электросопротивление массивного проводника невелико, следовательно, токи Фуко могут достигнуть большого значения. Сила вихревых токов зависит от формы и свойств материала проводника, направления переменного магнитного поля, скорости, с которой изменяется магнитный поток. Распределение токов Фуко в проводнике может быть очень сложным.

Количество тепла, которое выделяется за $1 с$ токами Фуко пропорционально квадрату частоты изменения магнитного поля.

По закону Ленца, токи Фуко выбирают такие направления, чтобы своим воздействовать причину, которая их вызывает. Значит, если проводник движется в магнитном поле, то он должен испытывать сильное торможение, которое вызвано взаимодействием токов Фуко и магнитного поля.

Приведем пример возникновения оков Фуко. Медный диск диаметром $5 см$, толщиной $6 мм$ заставим падать в узком зазоре между полюсами электромагнита. Если магнитное поле отключено, диск быстро падает. Включим электромагнит. Поле должно быть большим (порядка $0,5Тл$). Падение диска станет медленным и будет напоминать движение в очень вязкой среде.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Применение токов Фуко

Токи Фуко играют полезную роль в роторе асинхронного двигателя, который приводится во вращательное движение магнитным полем. Сама реализация принципа работы асинхронного двигателя требует появления токов Фуко.

Токи Фуко используют при демпфировании подвижных частей гальванометров, сейсмографов и ряда других приборов. Так, на подвижную часть прибора устанавливают пластинку - проводник в виде сектора. Она вводится в промежуток между полюсами сильного постоянного магнита. Когда пластинка движется, в ней появляются токи Фуко, это вызывает торможение системы. Причем торможение появляется только тогда, когда пластинка движется. Следовательно, подобного рода успокаивающее устройство не мешает точному приходу системы в состояние равновесия.

Теплоту, которая выделяется токами Фуко, используют в процессах разогрева. Так, плавка металлов с использованием токов Фуко является весьма выгодной в сравнении с другими методами разогрева. Так называемая индукционная печь представляет собой катушку, по которой идет ток высокой частоты и большой силы. Внутрь катушки помещают проводящее тело, в нем появляются вихревые токи большой интенсивности, которые и разогревают вещество до плавления. Так проводят плавление металлов в вакууме, что ведет к получению материалов высокой чистоты.

При использовании токов Фуко проводят прогрев внутренних металлических частей вакуумных установок с целью их обезгаживания.

Проблемы, которые вызывают вихревые токи. Скин - эффект

Токи Фуко могут играть не только полезную роль. Вихревые токи являются токами проводимости, и часть энергии рассеивают на выделение джоулевой теплоты. Такая энергия, например, в роторе асинхронного двигателя, который изготавливается, обычно из ферромагнетиков, нагревает сердечники, тем самым ухудшаются их характеристики. Для борьбы с таким явлением сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора и устанавливают пластины так, чтобы токи Фуко имели направление поперек пластин. При небольшой толщине пластин вихревые токи имеют малую объемную плотность. С появлением ферритов и веществ с большим магнитосопротивлением стало возможным изготовление сердечников сплошными.

Вихревые токи возникают в проводах, в которых текут переменные токи, причем направление токов Фуко таково, что они ослабляют ток внутри провода и усиливают его около поверхности. Следовательно, быстро изменяющийся ток распределен по сечению провода неравномерно. Такое явление называется скин - эффектом (поверхностным эффектом). Из-за этого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой используют трубки в качестве проводников. Скин - эффект может применяться для разогрева поверхностного слоя металла, что позволяет использовать это явление для закалки металла, причем, изменяя частоту поля, можно проводить закалку на любой необходимой глубине.

Приближенные формулы, которыми можно описать скин-эффект в однородном цилиндрическом проводнике:

Рисунок 1.

где $R_w$ - эффективное сопротивление проводника радиусом $r$ переменному току с циклической частотой $w$. $R_0$ - сопротивление проводника постоянному току.

где эффективная глубина проникновения переменного тока ($\delta $) (расстояние от поверхности проводника, на котором плотность тока уменьшается в $e=2,7\ $раз в сравнении с плотностью на его поверхности) равна:

$\mu $ - относительная магнитная проницаемость, ${\mu }_0$ - магнитная постоянная, $\sigma $ - удельная электропроводность проводника для постоянного тока. Чем толще проводник, тем существеннее скин - эффект, тем меньше величины $w$ и $\sigma $, при которых его следует учесть.

Пример 1

Задание: В опыте с центробежной машиной к ней прикрепили массивный медный диск, привели этот диск во вращение с большой скоростью. Над диском подвесили (без соприкосновения) магнитную стрелку. Что будет происходить со стрелкой, почему?

Решение:

Магнитная стрелка выступает в роли магнита, который создает магнитное поле, в этом поле вращается медный проводник. Следовательно, в проводнике возникают индукционные токи - токи Фуко. По правилу Ленца вихревые токи, взаимодействуя с магнитным полем, стремятся остановить вращение диска или в соответствии с третьим законом Ньютона увлечь за собой магнитную стрелку. Значит, магнитная стрелка, которая висит над диском, будет поворачиваться вслед за ним и закрутит подвес (нить).

Ответ: Магнитная стрелка будет вращаться, причина - вихревые токи.

Пример 2

Задание: Объясните, почему подземный кабель, по которому передается переменный ток нельзя прокладывать вблизи от металлических газовых и водопроводных труб?

Решение:

Под действием переменного тока вокруг кабеля возникает переменное магнитное поле, если в это поле попадает проводник (металлическая труба), то возникнут индукционные вихревые токи. Эти токи вызывают коррозию металлических труб. Кроме того наличие токов в трубах опасно, так как возникает возможность поражения током.

Пример 3

Задание: Маятник, изготовленный из толстой листовой меди, имеет форму усеченного сектора. Он подвешен на стержне и может совершать свободные колебания вокруг горизонтальной оси в магнитном поле между полюсами сильного электромагнита. В отсутствии магнитного поля маятник совершает колебания практически без затухания. Опишите колебания маятника в магнитном поле электромагнита. Как заставить маятник колебаться почти без затухания в присутствии магнитного поля?

Решение:

Если описанный массивный маятник, осуществляющий колебания, поместить в сильное магнитное поле, то в маятнике возникают токи Фуко. Эти токи по правилу Ленца тормозят движения маятника, амплитуда колебаний уменьшается, и сами колебания скоро прекращаются.

Для того чтобы уменьшить вихревые индукционные токи в маятнике, осуществляющем колебания в магнитном поле, можно его сплошной сектор заменить гребенкой с удлинёнными зубцами. Токи Фуко будут уменьшены, и маятник будет совершать колебания практически без затухания.

spravochnick.ru


Смотрите также