Термопара что это такое


Термопары: устройство и принцип работы простым языком, типы

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки. Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений. В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.

Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов. В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары. Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Рис. 1. Схема строения термопары

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

Рис. 2. Термопара с керамическими бусами

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

Рис. 3. Измерение напряжения на проводах ТП

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки. Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки. Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не  такие жёсткие и погрешность может быть на порядок ниже.

Рис. 4. Решение вопроса точности показаний термопар

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

  • ТПП13 – платинородий-платиновые (тип R);
  • ТПП10 – платинородий-платиновые (тип S);
  • ТПР – платинородий-платинродиевые (тип B);
  • ТЖК – железо-константановые (тип J);
  • ТМКн – медь-константановые (тип T);
  • ТНН – нихросил-нисиловые (тип N);
  • ТХА – хромель-алюмелевые (тип K);
  • ТХКн – хромель-константановые (тип E);
  • ТХК – хромель-копелевые (тип L);
  • ТМК – медь-копелевые (тип M);
  • ТСС – сильх-силиновые (тип I);
  • ТВР – вольфрамрениевые (типы A-1 – A-3).

Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.

Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.

Типы спаев

В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.

Рис. 5. Типы спаев

Буквами обозначено:

  • И – один спай, изолированный от корпуса;
  • Н – один соединённый с корпусом спай;
  • ИИ – два изолированных друг от друга и от корпуса спая;
  • 2И – сдвоенный спай, изолированный от корпуса;
  • ИН – два спая, один из которых заземлён;
  • НН – два неизолированных спая, соединённых с корпусом.

Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.

С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.

Многоточечные термопары

Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.

Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.

Таблица сравнения термопар

Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?

Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.

Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.

Таблица 1.

Тип термопары K J N R S B T E
Материал положительного электрода Cr—Ni Fe Ni—Cr—Si Pt—Rh (13 % Rh) Pt—Rh (10 % Rh) Pt—Rh (30 % Rh) Cu Cr—Ni
Материал отрицательного электрода Ni—Al Cu—Ni Ni—Si—Mg Pt Pt Pt—Rh (6 % Rh Cu—Ni Cu—Ni
Температурный коэффициент 40…41 55.2 68
Рабочий температурный диапазон, ºC 0 до +1100 0 до +700 0 до +1100 0 до +1600 0 до 1600 +200 до +1700 −185 до +300 0 до +800
Значения предельных температур, ºС −180; +1300 −180; +800 −270; +1300 – 50; +1600 −50; +1750 0; +1820 −250; +400 −40; +900
Класс точности 1, в соответствующем  диапазоне температур, (°C) ±1,5 от −40 °C до 375 °C ±1,5 от −40 °C до 375 °C ±1,5 от −40 °C до 375 °C ±1,0 от 0 °C до 1100 °C ±1,0 от 0 °C до 1100 °C ±0,5 от −40 °C до 125 °C ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C ±0,004×T от 375 °C до 750 °C ±0,004×T от 375 °C до 1000 °C ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 ° ±0,004×T от 125 °C до 350 °C ±0,004×T от 375 °C до 800 °C
Класс точности 2 в соответствующем  диапазоне температур, (°C) ±2,5 от −40 °C до 333 °C ±2,5 от −40 °C до 333 °C ±2,5 от −40 °C до 333 °C ±1,5 от 0 °C до 600 °C ±1,5 от 0 °C до 600 °C ±0,0025×T от 600 °C до 1700 °C ±1,0 от −40 °C до 133 °C ±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C ±0, T от 333 °C до 750 °C ±0,0075×T от 333 °C до 1200 °C ±0,0025×T от 600 °C до 1600 °C ±0,0025×T от 600 °C до 1600 °C ±0,0075×T от 133 °C до 350 °C ±0,0075×T от 333 °C до 900 °C
Цветовая маркировка выводов по МЭК Зелёный — белый Чёрный — белый Сиреневый — белый Оранжевый — белый Оранжевый — белый Отсутствует Коричневый — белый Фиолетовый — белый

Способы подключения

Каждая новая точка соединения проводов из разнородных металлов образует холодный спай, что может повлиять на точность показаний. Поэтому подключения термопары выполняют, по возможности, проводами из того же материала, что и электроды. Обычно производители поставляют изделия с подсоединёнными компенсационными проводами.

Некоторые измерительные приборы содержат схемы корректировки показаний на основе встроенного термистора. К таким приборам просто подключаются провода, соблюдая их полярность (см. рис. 6).

Рис. 6. Компенсационные провода

Часто используют схему подключения «на разрыв». Измерительный прибор, подключают через проводник того же типа что и клеммы (чаще всего медь). Таким образом, в местах соединения отсутствует холодный спай. Он образуется лишь в одном месте: в точке присоединения провода к электроду термопары. На рисунке 7 показана схема такого подключения.

Рис. 7. Схема подключения на разрыв

При подключении термопары следует как можно ближе размещать измерительные системы, чтобы избежать использования слишком длинных проводов. Во всяком проводе возможны помехи, которые усиливаются с увеличением длины проволоки. Если от радиопомех можно избавиться путём экранирования проводки, то бороться с токами наводки гораздо сложнее.

В некоторых схемах используют компенсирующий терморезистор между контактом измерительного прибора и точкой холодного спая. Поскольку внешняя температура одинаково влияет на резистор и на свободный спай, то данный элемент будет корректировать такие воздействия.

И напоследок: подключив термопару к измерительному прибору, необходимо, пользуясь градуировочными таблицами, выполнить процедуру калибровки.

Применение

Термопары используются везде, где требуется измерение температуры в технологической среде. Они применяются в автоматизированных системах управления в качестве датчиков температуры. Термопары типа ТВР, у которых внушительный диаметр термоэлектрода, незаменимы там, где требуется получать данные о слишком высокой температуре, в частности в металлургии.

Газовые котлы, конвекторы, водонагревательные колонки также оборудованы термоэлектрическими преобразователями.

Преимущества

  • высокая точность измерений;
  • достаточно широкий температурный диапазон;
  • высокая надёжность;
  • простота в обслуживании;
  • дешевизна.

Недостатки

Недостатками изделий являются факторы:

  • влияние свободных спаев на показатели приборов;
  • ограничение пределов рабочего диапазона нелинейной зависимостью ТЭДС от степени нагревания, порождающей сложности в разработке вторичных преобразователей сигналов;
  • при длительной эксплуатации в условиях перепадов температур ухудшаются градуировочные характеристики;
  • необходимость в индивидуальной градуировке для получения высокой точности измерений, в пределах погрешности в 0,01 ºC.

Благодаря тому, что проблемы связанные с недостатками решаемы, применение термопар более чем оправдано.

Видео по теме

www.asutpp.ru

Что такое термопара, принцип действия, основные виды и типы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю – «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

https://www.youtube.com/watch?v=Gv1IHc1B8Mc

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С – керамика с повышенным содержанием Al2O3, свыше 1400°С – керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

odinelectric.ru

Термопара - это... Что такое Термопара?

Схема термопары. При температуре спая нихрома и алюминий-никеля равной 300 °C термоэдс составляет 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3. Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик [1]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра; — Не допускать по возможности механических натяжений и вибраций термопарной проволоки; — При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода; — По возможности избегать резких температурных градиентов по длине термопары; — Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях; — Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;

— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 31 июля 2012.

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

В 1920х—30х годах термопары использовались для питания детекторных приемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т.п) с использованием открытого огня.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С)
  • Большой температурный диапазон измерения: от −200 °C до 2500 °C
  • Простота
  • Дешевизна
  • Надежность

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

  • платинородий-платиновые — ТПП13 — Тип R
  • платинородий-платиновые — ТПП10 — Тип S
  • платинородий-платинородиевые — ТПР — Тип B
  • железо-константановые (железо-медьникелевые) ТЖК — Тип J
  • медь-константановые (медь-медьникелевые) ТМКн — Тип Т
  • нихросил-нисиловые (никельхромникель-никелькремниевые) ТНН — Тип N.
  • хромель-алюмелевые — ТХА — Тип K
  • хромель-константановые ТХКн — Тип E
  • хромель-копелевые — ТХК — Тип L
  • медь-копелевые — ТМК — Тип М
  • сильх-силиновые — ТСС — Тип I
  • вольфрам и рений — вольфрамрениевые — ТВР — Тип А-1, А-2, А-3

Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ [2].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.

Тип термопары МЭК Температурный диапазон °C (длительно) Температурный диапазон °C (кратковременно) Класс точности 1 (°C) Класс точности 2 (°C) IEC Цветовая маркировка
K 0 до +1100 −180 до +1300 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 1000 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 1200 °C
J 0 до +700 −180 to +800 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 750 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 750 °C
N 0 до +1100 −270 to +1300 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 1000 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 1200 °C
R 0 до +1600 −50 to +1700 ±1.0 от 0 °C до 1100 °C ±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C ±1.5 от 0 °C до 600 °C ±0.0025×T от 600 °C до 1600 °C
S 0 до 1600 −50 до +1750 ±1.0 от 0 °C до 1100 °C ±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C ±1.5 от 0 °C до 600 °C ±0.0025×T от 600 °C до 1600 °C
B +200 до +1700 0 до +1820 ±0.0025×T от 600 °C до 1700 °C
T −185 до +300 −250 до +400 ±0.5 от −40 °C до 125 °C ±0.004×T от 125 °C до 350 °C ±1.0 от −40 °C до 133 °C ±0.0075×T от 133 °C до 350 °C
E 0 до +800 −40 до +900 ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 800 °C ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 900 °C

См. также

Примечания

  1. ↑ Источники погрешности термопары
  2. ↑ Пересмотр стандарта МЭК 60584

  • Термопары и их применение
  • Термопары, термисторы, другие датчики

dic.academic.ru

Термопары: подробно простым языком

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

www.kipiavp.ru

Что такое термопара?

Термопара – это электротехническое изделие, предназначенное для измерения температуры на производстве, в лабораторных и научных исследованиях, а также в бытовых условиях. На сегодняшний день термопары очень распространены и применяются практически везде. Их используют для измерения температуры воды, воздуха, различных газов, для измерения температуры смазочных материалов в механизмах и т.д.

Простейшая термопара представляет собой два разнородных электропроводящих элемента, соединённых друг с другом в одной точке. Соединение может быть выполнено в виде скрутки, пайки или сварки. В качестве проводящих электричество элементов в основном используются металлические проводники, реже полупроводниковые элементы.

В зависимости от используемых проводниковых материалов в термопаре, можно измерять температуры в различных числовых диапазонах. Благодаря использованию термопар появилась возможность производить измерения температур примерно от -250ᴼC до 2000ᴼC и более.

Принцип работы и схема

Работа любой термопары основывается на термоэлектрическом эффекте, который был открыт Т.И. Зеебеком в далёком 1821 году. Данный эффект заключается в том, что если последовательно соединить друг с другом два разнородных металлических проводника, образуя таким образом замкнутую электрическую цепь, и в одном месте соединения проводников произвести нагрев, то в цепи возникает электродвижущая сила (ЭДС). Данную электродвижущую силу называют термо-ЭДС. Под действием термо-ЭДС в замкнутой цепи начинает протекать электрический ток.

Место нагрева обычно называют горячим спаем. Место, где нет нагрева – холодный спай.

Если в разрыв цепи подключить гальванометр или микровольтметр, то можно измерить величину термо-ЭДС, которая будет составлять несколько мили- или микровольт. Значение термо-ЭДС будет зависеть от величины нагрева в месте соединения проводников и от величины температуры в месте соединения проводников, где нагрев не происходит. Т.е. значение термо-ЭДС зависит от разности температур между холодным и горячим спаем. Также термо-ЭДС зависит и от рода самих проводников.   

Таким образом, если место соединения разнородных проводников термопары нагреть, то между несоединёнными (свободными) концами проводников возникнет разность потенциалов, которую можно измерить электроизмерительным прибором. Благодаря современным преобразователям возникающую разность потенциалов можно преобразовать в определённое цифровое значение, т.е. вполне реально узнать значение температуры нагрева в месте соединения проводников термопары.

Для того чтобы измерения были точными, температура холодного спая должна быть неизменной. Т.к. это не всегда возможно, используются специальные компенсационные схемы для компенсации температуры холодного спая.

Конструкция

Современные термопары изготавливаются различной формы и длины. По конструктивному исполнению их можно разделить на две группы:

● бескорпусные термопары;

● термопары с защитным кожухом.

Первые представляют собой изделие, у которого место соединения двух проводников не закрыто и не защищено от внешних воздействий. Такое исполнение позволяет достичь быстрого времени измерения температуры и низкой инертности.

Второй тип термопары выпускается в виде зонда. Зонд представляет собой металлическую трубку с внутренним изолятором, выдерживающим высокую температуру. Внутрь зонда помещается термоэлектрический элемент термопары. Благодаря такой конструкции термоэлемент защищён от влияния агрессивных сред различных технологических процессов.

Типы термопар - таблица

Термопары отличаются друг от друга материалом используемых проводников и в зависимости от этого делятся на определённые типы. Вот некоторые из них:

  1. Тип В. Платина-родий. Диапазон измеряемых температур у термопары составляет от +600 до +1700ᴼC. Данный тип желательно использовать при измерении температур выше +600ᴼC.
  2. Тип E. Хромель-константан. Термопара, у которой диапазон измеряемых температур в пределах от -200 до +700ᴼC.
  3. Тип J. Железо-константан. Диапазон измеряемых температур от -200 до +750ᴼC.
  4. Тип K. Хромель-алюмель. С помощью этой термопары можно производить измерения температур в районе от -200 до +1200ᴼC. Это термопара общего применения. Она недорогая, поэтому очень широко используется.
  5. Тип N. Нихросил-нисил. Диапазон измеряемых температур от -270 до +1200ᴼC.
  6. Тип R. Платина-родий. Диапазон измеряемых температур от 0 до +1300ᴼC. Термопара используется при измерении высоких температур, однако её практическое использование весьма ограниченно ввиду большой стоимости и низкой чувствительности.
  7. Тип S. Платина-родий. Диапазон измеряемых температур от 0 до +1300ᴼC. Эту термопару можно использовать в качестве замены предыдущей.
  8. Тип T. Медь-константан. Диапазон измеряемых температур от -200 до +350ᴼC. Термопары типа T используют обычно в устройствах магнитного типа, т.к. медь и константан не магнитные металлы.

У каждого соединения двух определённых сплавов есть своя постоянная зависимость между измеряемой температурой и напряжением на выходе термопары.

Для выбора типа термопары, необходимо знать диапазон температур технологического процесса.

Подключение

Для того чтобы производить измерение температуры при помощи термопар, их подключают к специальным измерительным преобразователям. Подключение выполняется либо напрямую, либо дифференциально (в разрыв проводников с различными коэффициентами термо-ЭДС).

Если термопара находится на довольно длинном расстоянии от измерительного прибора, используют специальные удлинительные провода и так называемые компенсационные провода.

Плюсы

У термопар есть масса преимуществ по сравнению с другими датчиками температуры. К плюсам можно отнести:

● простота конструкции;

● прочность;

● надёжность;

● универсальность;

● невысокая стоимость (хотя зависит от дополнительных элементов, таких как соединительные провода, защита в виде зонда, дополнительные разъёмы);

● возможность использовать в экстремальных условиях и достаточно агрессивных средах;

● большой диапазон измеряемых температур;

● определённая точность измерений;

● широкая сфера применения.

Недостатки

Как и у любого изделия, у термопар имеются и недостатки. К ним относятся:

● низкое выходное напряжение (на один градус по Цельсию всего несколько микровольт);

● нелинейность.

aquagroup.ru

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500 градусов. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов
Железо-константановые
  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500 градусов, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые
  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.
Медно-константановые термопары
  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400 градусов.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0 градусов.
Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500 градусов появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5 градусов.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые
  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500 градусов. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250 градусов.
  • Рекомендуемая температура эксплуатации не превышает 1200 градусов, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Термодатчики из благородных металлов
Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350 градусов.
  • Допускается кратковременное использование при 1600 градусах.
  • Нецелесообразно использовать при температуре менее 400 градусов, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000 градусов термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900 градусов, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.
Платинородий-платинородиевые
  • Оптимальная наибольшая рабочая температура 1500 градусов.
  • Нецелесообразно использование при температуре менее 600 градусов, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750 градусах.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.
Преимущества
  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.
Недостатки
  • Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  • Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  • Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  • На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  • ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  • Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.
Рекомендации по эксплуатации
Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:
  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:

electrosam.ru


Смотрите также