Переменный ток что это такое


Чем отличается постоянный ток от переменного

Постоянный и переменный ток

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный.                                                                                                                                    Чем отличается переменный ток от постоянного?                                                       Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении  любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос.                                                                                                                        Важная особенность постоянного электрического тока - это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках.                                                                                        Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств. 

 

Переменный ток           

 (Alternating Current) или АС английская аббревиатура  обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических  аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~».                               Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.                                                                         На рисунке обратное направление – это область графика ниже нуля.

 Теперь давай разберемся, что такое частота.  Частота это - период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц.                                                                                                                                       Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.        Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду - это и есть, частота переменного тока.  Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?  Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.                                                                                                                    Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.            

 Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно  подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.  Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

   что такое диод  и как работает диодный мост , ты можешь узнать в моих следующих статьях.

slojno.net

Переменный ток: определение, чем он лучше постоянного, зачем его используют в электрических сетях

Большинство современных бытовых и промышленных устройств работают от сети переменного тока. К ним можно отнести также все приборы на основе постоянного тока или питающиеся от аккумуляторов, поскольку они используют ту или иную форму DC, полученную из AC как с помощью преобразования сетевого напряжения, так и путём зарядки батарей. Но так было не всегда. Потребовалось немало времени, чтобы подобная система энергоснабжения зарекомендовала себя с лучшей стороны.

Эдисон и Тесла

Ипполит Пикси сумел создать первый генератор переменного тока в 1835 году. Это было устройство на постоянных магнитах, работающее при вращении рукоятки. Предприниматели того времени были заинтересованы в генерации DC и не совсем понимали, где может применяться изобретение и зачем нужно получать AC.

Настоящая конкуренция за стандарты электричества в линиях передач развернулась к концу 1880-х. годов, когда началась борьба между основными энергетическими компаниями за доминирование на рынке собственных запатентованных энергетических систем. Это было соперничество концепций электрификации двух великих изобретателей: Николы Теслы и Томаса Эдисона.

Эдисон изобрёл и усовершенствовал немало устройств, необходимых для первых систем генерации и транспортировки постоянного тока. В течение короткого времени его компания смогла открыть более 200 станций в Северной Америке. Предприятие росло, и изобретатель для выполнения работ по усовершенствованию оборудования нанял Николу Теслу — молодого инженера из Европы. Новый сотрудник предложил вниманию Эдисона революционные для того времени работы, основанные на технологиях переменного значения. Идеи Тесла были отвергнуты и пути изобретателей разошлись.

Джордж Вестингауз, наоборот, отнёсся к открытиям сербского инженера с большим интересом и выкупил все патенты Тесла. После предприятия Вестингауза пережило немало потрясений, в том числе и связанных с мощными пропагандистскими компаниями Эдисона. Финалом борьбы стал момент, когда система Теслы была выбрана для освещения выставки в Чикаго. Это событие познакомило мир с преимуществами многофазной генерации AC и его транспортировки. С тех пор большинство электрических устройств и сетей заказывались уже под новый стандарт. Основными датами войны токов были:

  • 1870 г. — создание Эдисоном первого генератора DC;
  • 1878 г. — основание Edison Electric Light Co в Нью-Йорке;
  • 1882 г. — открытие Эдисоном генерирующей станции Pearl Street на 5 тыс. огней;
  • 1883 г. — изобретение Теслой трансформатора;
  • 1884 г. — изобретение Теслой генератора AC;
  • 1888 г. — демонстрация Теслой многофазной электрической системы, Вестингауз выкупает его патенты;
  • 1888 г. — казнь с помощью электрического стула, изобретённого Эдисоном как средство для пропагандистской компании, демонстрирующей опасность технологий Теслы.
  • 1893 г. — триумф Westinghouse Electric Company на Чикагской ярмарке.

Определение и свойства

Гальваническая батарея выдаёт стабильную разницу потенциалов на полюсах в течение длительного времени до момента завершения в ней химической реакции. Ток от подобного источника называют постоянным. Простое определение переменного тока, понятное для чайников и приемлемое для специалистов, можно построить от обратного: AC есть поток зарядов в проводнике, периодически меняющий свою величину и направление. В сетях энергоснабжения он регулярно изменяет амплитуду и полярность.

Эти изменения представляют собой бесконечные повторения последовательности идентичных циклов, формирующих на экране осциллографа синусоиду, в отличие от DC, который визуализируется как прямая.

Графическая иллюстрация важна для понимания того, какой ток называют переменным синусоидальным.

Поскольку из определения переменного тока следует, что изменения параметров являются регулярными, переменное электричество обладает рядом свойств, связанных с качеством и формой его отражения на графике. Эти основные свойства можно представить следующим списком:

  • Частота. Одно из наиболее важных свойств любого регулярного сигнала. Определяет количество полных циклов за конкретный период. Измеряется в герцах (циклах в секунду). В Европе для сетей электроснабжения составляет 50 Гц, в США и Канаде — 60 Гц.
  • Период. Иногда важно знать количество времени, необходимое для завершения одного цикла электрического сигнала, а не числа циклов в секунду времени. Период — понятие логически обратное частоте, означающее длительность одного цикла в секунду.
  • Длина волны. Характеристика, похожая на период, но может быть измерена из любой части одного цикла к эквивалентной точке в следующем.
  • Амплитуда. В контексте электрического тока — это наибольшее значения АС относительно нейтрального. Математически амплитуда синусоиды есть значение этой синусоиды на пике. Однако если речь идёт о системах питания, то лучше обращаться к понятию эффективного тока. В качестве эквивалента используется количество работы, которую способен сделать постоянный ток при напряжении, равном амплитуде исследуемого переменного тока. Для синусоидальной волны эффективное напряжение составляет 0,707 от амплитуды.

В случае с АС наиболее важные свойства — частота и амплитуда, так как все виды оборудования разрабатываются с учётом соответствия этим параметрам в линии электропередачи. Период требует внимания при проектировании электронных источников питания.

А длина волны, как параметр, становится важен, когда речь идёт о токах со значительно более высокой частотой, чем в сетях энергоснабжения.

Сравнение AC и DC

Направление потока электрической энергии определяет постоянный и переменный ток. Разница в том, что в первом случае заряды перемещаются в одном направлении и непрерывно, а во втором — направление потока меняется через равные интервалы. Последнее сопровождается чередованием уровня напряжения и сменой полюсов на источнике с положительного на отрицательный и наоборот, что делает процессы в нагрузках более сложными, чем в случае с постоянным напряжением.

Ключевым преимуществом DC состоят в том, что его можно легко аккумулировать или создавать в портативных химических источниках. Но использование AC позволяет осуществлять передачу электрической энергии на большие расстояния намного экономичнее. Дело в том, что мощность W=I*V, передаваемая от станции, не в полном объёме доставляется до точки назначения. Часть её расходуется на нагрев линий электропередачи в размере W= I2*R.

Очевидный способ сокращения потерь — уменьшение сопротивления за счёт наращивания толщины проводов. Но для его реализации существует экономический предел: толстые проводники стоят дороже. Кроме того, массивные провода требуют дорогих несущих конструкций.

Задача имеет блестящее решение, если изменить напряжение и силу тока при сохранении мощности. Например, при увеличении V в тысячу раз и соответствующем уменьшении I, значение мощности сохраняется прежним, но потери уменьшаются в миллионы раз, поскольку они находятся в квадратичной зависимости от силы тока. Остаётся проблема преобразования напряжения до безопасных значений при распределении его к потребителям.

Это невозможно в случае с DC, но переменный ток позволяет изменять значения I и V при сохранении мощности с помощью трансформаторов. Энергетические компании используют это свойство для транспортировки электричества. Способность к трансформации и определяет главное, практически применимое отличие переменного тока от постоянного.

Другим важным преимуществом является необычайная простота его производства и возможность реализации в несложных конструкциях электродвигателей. Электрические приводы — наиболее значимый способом применения AC.

Генерация и трансформация

Принцип генерации электричества прост. Если магнитное поле вращается вдоль стационарного набора катушек из витков проводника или, наоборот, катушка вращается вокруг стационарного магнитного поля, то благодаря явлению электромагнитной индукции на концах обмоток возникает разность потенциалов. С каждым изменением угла поворота в результате описанного кругового движения выходное напряжение также будет меняться как по величине, так и по направлению.

Описанный условный генератор при постоянной угловой скорости вращения вала производит синусоидальный AC с формой волны, ничем не отличающейся от поставляемого в бытовой сети. Реальные генераторы устроены значительно сложнее, но работают на том же принципах электромагнитной индукции.

Эти же законы помогают не только в производстве AC, но и в его передаче и распределении. Преобразования напряжения энергетическим компаниями невозможно осуществить без электрических машин, называемых трансформаторами. Вот почему это изобретение Теслы было так важно для революции в транспортировке электричества.

Любой трансформатор состоит из следующих элементов:

  • первичной и вторичных обмоток;
  • сердечника.

Слово «первичная» применяется для обмотки, на которую подаётся электрическое напряжение, нуждающееся в трансформации. Индуцированное напряжение на вторичной катушке всегда равно приложенному на первичной, умноженному на соотношение витков вторичной к первичной. Трансформатор позволяет пошагово изменять напряжение.

Разность потенциалов, которая получается на выходе, есть расчётная величина, зависящая от соотношения витков обмоток.

Используемые виды

В большинстве случаев под тем, какой ток называется переменным, подразумевают электричество из бытовой сети. Для многих далёких от электрики и электроники людей было бы неожиданностью узнать, что под АС подразумевается значительно более широкое понятие, чем электричество из розетки.

Краткий перечень переменных токов, используемых в сетях питания:

  • Однофазный. Простой вид, переменный по направлению. Коммерческий его тип имеет синусоидальный вид на графике и передаётся по двум проводникам.
  • Трёхфазный. Электричество для промышленных нужд обычно поставляется в виде трёх отдельных синусоид с пиками амплитуды в трети цикла друг от друга. Для передачи энергии таким способом требуется три (иногда четыре) проводника.
  • Двухполупериодный выпрямленный однофазный. Полученный из переменного с помощью выпрямителя таким образом, чтобы обратная половина цикла сменила полярность. Его можно рассматривать как пульсирующий постоянный ток без интервала между импульсами.
  • Полностью выпрямленное трёхфазное напряжение. Однополярный ток с небольшой пульсацией. Это свойство выгодно отличает его от DC.
  • Полуволновой выпрямленный. Получается после выпрямления AC простейшим образом с обрезанием части с обратной полярностью. В результате получается пульсирующее напряжение с интервалами без разности потенциалов на клеммах.
  • Импульсное напряжение. Широко применяется в современной цифровой технике и электронике. Во многих случаях волна не синусоидальной, а прямоугольной формы.

В современных приборах используются самые разнообразные формы тока и нередко одновременно. Даже освещение в XXI веке изменилось неузнаваемо со времён Эдисона. Традиционная лампа накаливания работала непосредственно от сети AC, а её светодиодный аналог предварительно выпрямляет синусоидальное напряжение, преобразуя затем его до нужных параметров без помощи дополнительных устройств.

Однако война токов может иметь своё продолжение в совсем недалёком будущем. Растущее количество источников DC, таких как солнечные батареи и ветряки, стало стимулом для разработки технологий транспортировки постоянного тока на большие расстояния при потерях, сопоставимыми с передачей AC. В мире уже построено несколько таких действующих объектов и, вполне возможно, через некоторое время они продемонстрируют на практике свои преимущества перед классическими энергосистемами.

rusenergetics.ru

Переменный ток. Его характеристики

Электрическим током называют направленное движение заряженных частиц. Количественными характеристиками тока являются его сила тока (отношение заряда переносимого через поперечное сечение проводника в единицу времени) и его плотность, определяемая соотношением. Единицей измерения силы тока является ампер (1А - характерное значение тока, потребляемого бытовыми электронагревательными приборами). Необходимыми условиями существования тока являются наличие свободных носителей зарядов, замкнутой цепи и источника ЭДС (батареи), поддерживающего направленное движение.

Электрический ток может существовать в различных средах: в металлах, вакууме, газах, в растворах и расплавах электролитов, в плазме, в полупроводниках, в тканях живых организмов. При протекании тока практически всегда происходит взаимодействие носителей зарядов с окружающей средой, сопровождающееся передачей энергии последней в виде тепла. Роль источника ЭДС как раз и состоит в компенсации тепловых потерь в цепях. Электрический ток в металлах обусловлен движением относительно свободных электронов через кристаллическую решетку. Причины существования свободных электронов в проводящих кристаллах может быть объяснена только на языке квантовой механики.

Опыт показывает, что сила электрического тока, протекающего по проводнику, пропорциональна приложенной к его концам разности потенциалов (закон Ома). Постоянный для выбранного проводника коэффициент пропорциональности между током и напряжением называют электрическим сопротивлением. Сопротивление измеряют в омах (сопротивление человеческого тела составляет около 1000 Ом). Величина электрического сопротивления проводников слабо возрастает при увеличении их температуры. Это связано с тем, что при нагревании узлы кристаллической решетки усиливают хаотические тепловые колебания, что препятствует направленному движению электронов.

Во многих задачах непосредственный учет колебаний решетки оказывается весьма трудоемким. Для упрощения взаимодействия электронов с колеблющимися узлами оказывается удобным заменить их столкновениями с частицами газа гипотетических частиц - фононов, свойства которых подбираются так, чтобы получить максимально приближенное к реальности описание и могут оказываться весьма экзотическими. Объекты такого типа весьма популярны в физике и называются квазичастицами. Помимо взаимодействий с колебаниями кристаллической решетки движению электронов в кристалле могут препятствовать дислокации - нарушения регулярности решетки. Взаимодействия с дислокациями играют определяющую роль при низких температурах, когда тепловые колебания практически отсутствуют.

Некоторые материалы при низких температурах полностью утрачивают электрическое сопротивление, переходя в сверх проводящее состояние. Ток в таких средах может существовать без каких-либо ЭДС, поскольку потери энергии при столкновениях электронов с фононами и дислокациями отсутствуют. Создание материалов, сохраняющих сверхповодящее состояние при относительно высоких (комнатных) температурах и небольших токах является весьма важной задачей, решение которой произвело бы настоящий переворот в современной энергетике, т.к. позволило бы передавать электроэнергию на большие расстояния без тепловых потерь.

В настоящее время электрический ток в металлах используется главным образом для превращения электрической энергии в тепловую (нагреватели, источники света) или в механическую (электродвигатели). В последнем случае электрический ток используется в качестве источника магнитных полей, взаимодействие с которыми других токов вызывает появление сил.

1. Переменный ток

Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.

Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.

Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника.

Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой щ по синусоидальному или косинусоидальному закону:

где u – мгновенное значение напряжения, Um – амплитуда напряжения, щ – циклическая частота колебаний. Если напряжение меняется с частотой щ, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения.

Поэтому в общем случае:

где – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

2. Резистор в цепи переменного тока

Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.

Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).

Пусть напряжение на концах цепи меняется по гармоническому закону:

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:

Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:

При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.

1.1 Катушка в цепи переменного тока

Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.

Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.

Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4).

При изменениях силы тока по гармоническому закону:

в катушке возникает ЭДС самоиндукции:

где L – индуктивность катушки, щ – циклическая частота переменного тока.

Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:

Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на р/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на р/2.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.

Произведение Im ⋅ L ⋅ щ является амплитудой колебаний напряжения на катушке:

Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):

Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:

В отличие от электрического сопротивления проводника в цепи постоянного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в катушке при постоянном значении амплитуды колебаний напряжения должна убывать обратно пропорционально частоте. Постоянный ток вообще «не замечает» индуктивности катушки. При щ = 0 индуктивное сопротивление равно нулю (XL = 0).

Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором переменного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.

1.2 Конденсатор в цепи переменного тока

Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.

При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.

Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.

Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока.

При изменениях напряжения на обкладках конденсатора по гармоническому закону:

заряд на его обкладках изменяется по закону:

Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:

Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на р/2 или колебания силы тока опережают по фазе колебания напряжения на р/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.

Произведение Um ⋅ щ ⋅ C является амплитудой колебаний силы тока:

Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):

Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:

Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.

1.3 Закон Ома для электрической цепи переменного тока

Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой щ и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения

В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:

Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:

Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на р/2.

Поэтому уравнение (1) можно записать так:

где URm, UCm и ULm – амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.

Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.

При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im Колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, поэтому вектор

UCm отстает от вектора Im на угол 90°. Колебания напряжения на катушке опережают колебания силы тока по фазе на р/2, поэтому вектор ULm опережает вектор Im на угол 90° (рис. 9).

На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов Rm, Cm, Lm вращающихся с одинаковой угловой скоростью щ против часовой стрелки. Мгновенное значение напряжения во всей цепи равно сумме мгновенных напряжений uR, uC, и uL на отдельных элементах цепи, т.е. сумме проекций векторов URm, UCm и ULm на горизонтальную ось. Так как сумма проекций векторов на произвольную ось равна проекции суммы этих векторов на ту же ось, то амплитуду полного напряжения можно найти как модуль суммы векторов:

Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна:

Или

Отсюда

Введя обозначение для полного сопротивления цепи переменного тока:

выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:

Это выражение называют законом Ома для цепи переменного тока.

Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна щt + ц. Поэтому мгновенное значение полного напряжения определяется формулой:

Начальную фазу ц можно найти из векторной диаграммы:

Величина cos ц играет важную роль при вычислении мощности в электрической цепи переменного тока.

1.4 Мощность в цепи переменного тока

Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:

Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U?I характеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным.

Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:

Пусть напряжение на концах цепи меняется по гармоническому закону:

При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р < 0). Как правило, во всех случаях нам надо знать среднюю мощность на участке цепи за достаточно большой промежуток времени, включающий много периодов. Для этого достаточно определить среднюю мощность за один период.

Чтобы найти среднюю мощность за период, преобразуем полученную формулу таким образом, чтобы выделить в ней член, не зависящий от времени. С этой целью воспользуемся известной формулой для произведения двух косинусов:

Выражение для мгновенное мощности состоит из двух слагаемых. Первое не зависит от времени, а второе дважды за каждый период изменения напряжения изменяет знак: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течении другой части возвращается обратно. Поэтому среднее значение второго слагаемого за период равно нулю.

Следовательно, средняя мощность Р за период равна первому члену, не зависящему от времени:

При совпадении фазы колебаний силы тока и напряжения (для активного сопротивления R) среднее значение мощности равно:

Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = IU = I2R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим:

Действующим значением силы тока называют величину, в √2 раз меньшую ее амплитудного значения:

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Аналогично можно доказать, что действующее значение переменного напряжения в √2 раз меньше его амплитудного значения:

Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:

Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз цc между напряжением и током. Множитель cos цc в формуле называется коэффициентом мощности.

В случае, когда цc = ± р/2, энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при цc = – р/2 (чисто индуктивное сопротивление участка цепи).

График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.

Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.

При проектировании цепей переменного тока нужно добиваться, чтобы cos цc не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.

Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos цc в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой.

Это уменьшает коэффициент мощности всей цепи. Повышение cos цc является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos цc < 0,85.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

Амплитудой называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.

Периодом называется время, в течение которого происходит полное колебание тока в проводнике.Частота - величина, обратная периоду. Фаза характеризует состояние переменного тока с течением времени. При t = 0 фаза называется начальной.

Мгновенное значение тока - значение переменного тока в данный момент времени. Переменный ток получил гораздо большее распространение в промышленности и быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности, чем генераторы постоянного тока.

К периодическому режиму переменного тока может быть отнесён и синусоидальный. График синусоидальной функции называется волновой диаграммой.

Тепловое действие тока, а также сила взаимодействия двух проводников, по которым проходит один и тот же ток, пропорциональны друг другу. Поэтому о величине тока судят по так называемому действую-щему (среднеквадратичному) значению тока.

Действующее значение переменного тока равно по величине такому постоянному току, который, проходя через неизменное сопротивление R за период Т, выделяет то же количество тела, что и переменный ток.

Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующее значение.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды - отношение амплитудного значения к среднеквадратичному. Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414 Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732 Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы - отношение среднеквадратичного значения к средневыпрямленному. Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111 Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155 Для переменного тока и напряжения прямоугольной формы KФ = 1

Заключение

Переменный ток, AC (англ. alternating current - переменный ток) - электрический ток, периодически меняющийся по величине и направлению. Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону. В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока. Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Если индуктивность проводника настолько мала, что при включении его в цепь переменного тока индукционными полями можно пренебречь по сравнению с внешним электрическим полем, то движение электрических зарядов в проводнике определяется действием только внешнего электрического поля, напряженность которого пропорциональна напряжению на концах проводника. При изменении напряжения по гармоническому закону U = Um cos wt напряженность электрического поля в проводнике изменяется по такому же закону. Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения, где i - мгновенное значение силы тока, Im- амплитудное значение силы тока. Колебания силы тока в цепи являются вынужденными электрическими колебаниями, возникающими под действием приложенного переменного напряжения. Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит. При проектировании цепей переменного тока нужно добиваться, чтобы cos ?c не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов. Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos ?c в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой. Это уменьшает коэффициент мощности всей цепи. Повышение cos ?c является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей.

Список литературы:

1. Мякишев Г.Я., Синяков А.З. Физика: Колебания и волны. 11 кл.: Учеб. для углубленного изучения физики. – М.: Дрофа, 2002. – 288 с.

2. Физика: Учеб. пособие для 11 кл. шк. и классов с углубл. изуч. физики / А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др.; Под ред. А.А. Пинского. – М.: Просвещение, 1995. – 432 с.

3. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2009. — С. 46-51.

4. Д. Г. Максимов Курс электротехники. — Издание третье, переработанное. — Москва: Военное издательство Министерства обороны Союза ССР, 1958. — С. 298. — 786 с

Размещено на Allbest.ru

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд – это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Читайте также:  Сколько ватт в киловатте?

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров.  Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Читайте также:  Какие основные виды аккумуляторных батареек существуют?

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам.  В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети – переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Читайте также:  Что такое электрофорная машина и как она работает?

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» – противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

odinelectric.ru

Чем отличается переменный ток от постоянного — объяснение простыми словами

В электричестве есть два рода тока – постоянный и переменный. Устройства также требуют для питания один или другой вид тока. От этого зависит возможность их работы, а иногда и целостность после подключения к неправильному питанию. Чем отличается переменный ток от постоянного мы расскажем в этой статье, дав краткий ответ наиболее простыми словами.

Определение

Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.

Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).

Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:

Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.

Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Формулы для расчета постоянного тока

Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по Закону Ома для участка цепи или для полной цепи:

E=I/R

E=I/(R+r)

Мощность также просто рассчитываются:

P=UI

Формулы для расчета переменного тока

В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления:

Для ёмкости:

Для индуктивности:

Здесь 1/wC и wL – емкостное и индуктивное реактивные сопротивления, а w – угловая частота, она равна 2пиF.

Для цепи с ёмкостью и индуктивностью:

wL-1/wC – это реактивное сопротивление, оно обозначается как Z.

На видео ниже более подробно рассказывается, в чем отличие переменного тока от постоянного:

Материалы по теме:

samelectrik.ru

Постоянный и переменный ток

Технический прогресс с появлением электричества начал развиваться семимильными шагами. Новый вид энергии и практическое применение продуктов, получаемых в результате её преобразования, изменили класс жизни человека.

Движение частиц при постоянном и переменном токах

Что такое электрический ток

Перемещения свободных носителей электрических зарядов в вакууме или веществе в фиксированном направлении назвали электрическим током. Свободными носителями в металлах являются электроны, в жидкостях или газах – ионы. Название «ток» имеет два толкования. Первое – обозначает само продвижение электрического заряда в проводнике, второе – оценку числа электронов, проходящих по проводнику за 1 с. Его силу можно определить по Закону Ома. Для этого используется формула:

I=U/R,

где U – напряжение, В; R – сопротивление, Ом.

Ток постоянный и переменный

В розетке ток постоянный или переменный

Электроны в проводниках движутся от плюса к минусу. Движение равномерное, всё время с постоянной величиной. Если задаться вопросом, какие токи носят определение постоянных, сначала нужно хорошо представлять, куда течёт ток.

Внимание! Направлением тока считают то направление, куда движутся положительно заряженные частицы: от плюса к минусу. Хотя дорога свободных электронов лежит от минуса к плюсу.

Направление постоянного тока

Значит, постоянный ток – это направленное перемещение заряженных частиц, несущих в себе положительный заряд, которые не меняют свои величину и направление с течением времени. Все остальные токи – переменные. В этом их разница.

Alternative Current – AC, так обозначается переменный ток на приборах. Direct Current – DC, это понятное обозначение постоянного тока.

Постоянный и переменный ток

Различия токов

Незнание отличий приводит к неправильному подключению потребителей напряжения к источникам питания. Это вызывает повреждение приборов или, того хуже, опасные для жизни ситуации.

Смертельный ток для человека

Чтобы чётко разобраться, какой ток называется переменным, какой постоянным, нужно сопоставить параметры.

При сравнении характеристик этих двух видов электричества выделяют отличия:

  1. Физические – у переменного тока сила и направление состоят во временной зависимости. В бытовой сети частота пульсации – 50 Гц. Полярность изменяется по синусоиде 50 раз за секунду. Носители зарядов постоянного тока направленности не меняют.
  2. Конструктивные – на выводах или контактах у DC присутствуют « + » и «– », а у АС на электродах – «ноль» и «фаза». В случае трёхфазной сети 4 контакта: один «ноль» и три «фаза».
  3. Принцип вырабатывания – постоянный ток получают в результате электролитических и химических реакций окисления, работы генераторов постоянного тока и солнечных батарей. Переменный ток вырабатывается трёхфазными генераторами.
  4. В преобразовании – оба вида получают путём превращения одного в другой посредством полупроводниковых выпрямителей и инверторов.

Для информации. В мире действует два головных стандарта частоты и напряжения в потребительской сети переменного тока. Европейский стандарт – 50 герц, 220-240 вольт, и американский – 60 герц, 100-127 вольт.

Преимущества переменного тока

Аккумуляторные батареи практичны как источник постоянного электричества. Однако бесконечно снабжать токоприёмники энергией без подзарядки они не могут. Поэтому создание изменяющегося во времени тока и его доставка потребителю – главные задачи энергосистемы страны. К преимуществам этого вида относятся:

  • лёгкость преобразования из одной величины напряжения в другую;
  • допустимость передачи на дальние расстояния по ЛЭП к распределительным сетям;
  • возможность реализовывать трёхфазные схемы энергоснабжения;
  • ориентированность на потребителей производственных предприятий, рассчитанных на питание переменным током.

Снизить или повысить величину напряжения переменного тока проще. Для этого стоит только пропустить его через трансформатор. Большой КПД этого преобразователя – 99%, потеря мощности – лишь 1%. Трансформатор, имея отдельные обмотки по напряжению, ещё разделяет высокое напряжение от низкого, что допускает возможность разделить установки до 1000 В и свыше 1000 В.

Атомные и гидроэлектростанции расположены в местах, отдалённых от центральных районов расположения потребителей. Поэтому напряжение добытой электроэнергии повышают до сотен кВт, чтобы снизить потери при транспортировке, и передают по ЛЭП в нужное место, где снова понижают.

Гидроэлектростанция – ГЭС

Применяя трёхфазное переменное напряжение, повышают производительность структуры энергосистемы. Передача одинаковой мощности трёхфазной сети требует меньшего количества проводников, в отличие от однофазной линии.

Важно! Если сравнить два трансформатора одинаковой мощности, то габариты однофазного трансформатора больше, чем трёхфазного. Изготовление асинхронных двигателей обходится дешевле, чем двигателей постоянного тока. В них отсутствуют коллектор и щётки, по мощности при одинаковых размерах асинхронные двигатели обгоняют постоянные в 2-3 раза.

Недостатки постоянного тока

Кроме того, что источники этого вида тока имеют непростую конструкцию, они сложнее в эксплуатации. При КПД, равном 94%, предельная мощность этих машин не выше 20 МВт. Присущи и другие минусы:

  • для повышения или понижения напряжения применяют сложные схемы;
  • двигатели, рассчитанные на потребление такого электричества, также конструктивно сложны и недешевы;
  • развязка низкого и высокого напряжения требует сложных решений.

Полностью отказаться от таких источников и потребителей не получается, так как они востребованы и имеют свои преимущества.

Недостатки переменного тока

При передаче энергии изменяющего направление тока на большие расстояния возникают затруднения. Создание Единой Энергетической Системы выявило ряд недостатков:

  • пропускная способность кабельных линий низкая из-за ёмкости между проводниками и землёй;
  • при объединении и кольцевании ветвей системы, расположенных друг от друга на больших расстояниях, невозможно выполнить синхронизацию станций;
  • пороговый предел устойчивости, необходимый для согласования, заканчивается на длинах линий свыше 500 км, при этом требуется повышение напряжения до 450 кВ, что приводит к удорожанию оконечного оборудования.

К сведению. При повышенном напряжении у воздушных линий возникает коронный разряд. Это процесс ионизации у проводников с малым радиусом. Чтобы в этом случае не происходило стекание электричества, приходится увеличивать диаметр проводов, это ведёт к удорожанию линии.

Преимущества постоянного тока

Какие качества делают незаменимым постоянный ток? К плюсам относятся:

  • в цепях нет реактивной мощности, которая приводит к потерям;
  • параллельно работающие генераторы нет необходимости синхронизировать;
  • повышенная дальность передачи энергии в больших объёмах;
  • безопасность для человека при соприкосновении с токоведущими жилами.

К достоинствам добавляется то, что такое электричество, как постоянный ток, течёт по всему сечению проводника, поэтому потери мощности минимальны.

Плотность расположения зарядов по сечению проводника

История появления и «войны токов»

Никола Тесла и Томас Эдисон не дожили до того момента, когда представитель компании Consolidated Edison поставил точку в борьбе двух технологий. Переменный электрический ток одержал победу. В 2007 году ведущий инженер компании отсоединил кабель, символизирующий питание Нью-Йорка постоянным током.

Сербский учёный Никола Тесла ещё в 1882 году придумал, как применить эффект вращающегося электромагнитного поля. В то время Эдисон уже ввёл в строй 2 электростанции, вырабатывающие постоянный ток, и организовал производство кабелей, устройств освещения и динамо-машин. Тесла одно время работал в компании Эдисона и ремонтировал машины постоянного тока. Эдисон обещал Николе заплатить за проекты по модернизации двигателей, но выплатить вознаграждение за проведённую работу отказался. Тесла продал патенты своих изобретений Джорджу Вестингаузу, президенту компании Westinghouse Electric Corporation за 1 млн. долларов. Первая электростанция на 500 В изменяющего свою полярность электричества запущена в 1886 г. Война токов продолжалась более века.

Источники постоянного электрического тока

Для его получения используют специальный генератор, работа которого основана на законе электромагнитной индукции – ЭДС. Если вращать металлическую рамку, в зоне действия электромагнитного поля возникнет ЭДС, и по рамке потечёт электричество.

Генератор постоянного тока

Внимание! Увеличение ЭДС получают повышением силы поля или скорости вращения рамки. Снижения пульсации полученного движения электричества добиваются добавлением числа рамок.

Немеханические производители электричества постоянной природы:

  • солнечные батареи;
  • гальванические элементы;
  • термохимические элементы.

Аккумуляторы энергии из этой группы ограниченного срока действия и требуют периодической подзарядки.

Источники постоянного тока

Применение

Использование в электронике для питания схем – это не конечные варианты применения DC. Постоянный ток нашёл употребление в следующих случаях:

  • в электролизе – получение в промышленных масштабах металлов из солей и растворов;
  • гальванопластике и гальванизации – покрытие металлами электропроводящих поверхностей;
  • в сварочных работах – работа с нержавеющей сталью;
  • на транспорте – двигатели трамваев, электровозов, троллейбусов, ледоколов, подводных лодок;
  • в медицине – ввод лекарственных препаратов в организм при электрофорезе.

Для информации. В СССР начинали электрификацию железной дороги постоянным током на участках Баку – Сурамский перевал и Сабучини. До Великой Отечественной войны напряжение составляло 1,5 кВ, потом было переведено на 3 кВ. В общей сложности половина ж/д линий работало от этого вида тока.

Переменный ток

Вынужденные гармонические электромагнитные колебания – это синусоидальный ток. Колебания происходят с частотой 50 Гц в секунду. Напряжение и ток за период в среднем равны нулю.

Чем постоянный ток отличается от переменного, и каков его путь от источника до потребителя?

Ток постоянный не совершает колебаний, в этом постоянный и переменный ток различаются. Подача Direct Current – DC к потребителям также происходит по проводам и кабелям. Действуют до сих пор ЛЭП Волгоград – Донбасс.

Преобразование

К бытовым приборам, требующим снабжение схем электричеством типа DC, его подают через блоки питания. Это схемы, включающие в себя понижающий трансформатор и выпрямляющий блок. При подключении блока питания к устройству следят за совпадением их параметров по  напряжению и мощности. Параметры указаны на корпусе прибора.

Блок питания от сети 50 Гц

В настоящий момент оба вида электричества отлично уживаются в современном мире. Схемы смешанного питания потребителей только дополняют друг друга.

Видео

amperof.ru


Смотрите также