Макрофаги что это такое


Макрофаги клетки иммунной системы человека: виды, функции

В буквальном переводе определение «макрофаг» имеет довольно зловещий и пугающий смысл: «макрос» на греческом обозначает «большой», а «фагос» - пожиратель. «Большой пожиратель»… Воображение рисует какого-нибудь монстра, но речь идет всего лишь о клетках крови. Впрочем, если судить о макрофагах на клеточном уровне, то свое название они вполне оправдывают.

Что такое клетки макрофаги и откуда они берутся?

Все начинается в костном мозге, где из делящихся стволовых клеток образуется клетка под названием монобласт. В результате ее деления «рождается» промоноцит, его прямым потомком является моноцит – одна из разновидностей белых кровяных клеток. Моноцит переходит из костного мозга в клетки крови и там находится на протяжении 12-24 часов, после чего выходит из кровеносного русла и перемещается в ткани. В этот момент из моноцита и образуется макрофаг. 

Клетки макрофаги в самом деле большие: хотя их размер составляет всего 15-80 мкм, и человеческому глазу они не видны, однако они гораздо больше их предшественников: максимальный размер моноцита составляет всего 20 мкм. У них неправильная, «плавающая», меняющаяся форма, а их мембрана может образовывать ложноножки. Внутри макрофага находится ядро, а еще в нем обнаруживаются «осколки» эритроцитов и других клеток, жировые капельки, фрагменты бактерий и прочий «мусор». Как все это туда попадает? Очень просто, ведь макрофаги – это клетки, которые осуществляют процесс фагоцитоза.

Функции макрофагов:

При попадании в тело чужеродного объекта, будь то микроб или инородное тело, иммунная система сразу «спускает на него собак»: его атакуют фагоциты. Эти клетки, среди которых и макрофаги, распознают, улавливают и пожирают чужаков, угрожающих благополучию внутренней среды организма.

Кроме того, макрофаги уничтожают погибшие клетки, которые завершили свое существование процессом апоптоза (запрограммированная, естественная, нормальная гибель клеток). Также функции макрофагов заключаются в обеспечении противоопухолевого иммунитета: зафиксировав появление в организме атипичных, раковых клеток, макрофаги нападают на них и поедают. 

Виды макрофагов:

Макрофаги – тканевые фагоциты, и в разных типах тканей нередко живут свои собственные виды этих клеток. Вот несколько примеров их разновидностей, в зависимости от локализации. 

1. Альвеолярные макрофаги – находятся в стенках альвеол легких, очищают вдыхаемый воздух от различных загрязняющих и вредоносных частиц.

2. Купферовские клетки – в печени. Их назначение в основном заключается в уничтожении старых клеток крови.

3. Гистиоциты  - распространенная разновидность макрофагов, которые встречаются во всех органах. Дело в том, что это – клетки соединительной ткани: волокон, образующих строму (каркас) большинства структур тела. Иногда гистиоциты превращаются в «настоящие» макрофаги.

4. Селезеночные макрофаги – располагаются в синусоидных сосудах этого органа. Как и у клеток Купфера, их задача заключается в том, чтобы вылавливать из крови и уничтожать отжившие клетки крови. Недаром селезенка называется кладбищем погибших эритроцитов!

5. Дендритные клетки – макрофаги, находящиеся под слизистыми оболочками и в коже, то есть фактически на границе с внешней средой. 

6. Перитонеальные макрофаги – фагоциты, «живущие» в брюшине.  

7. Где находятся макрофаги лимфатических узлов, понятно по названию. Это благодаря им лимфоузлы известны в качестве фильтров, очищающих лимфу.

 Макрофаги и иммунная система:

Клетки макрофаги не просто бездумно уничтожают вредоносные объекты: расщепляя их на фрагменты, они осуществляют процесс презентации их антигенов. Антигены – это молекулы вредоносных частиц, которые говорят об их генетической чужеродности и вызывают соответствующую защитную реакцию со стороны иммунитета. Сами по себе они не представляют угрозы заражения или иного негативного воздействия, но это – метка чужака, поэтому организм реагирует на их присутствие защитной реакцией, как на полноценных агрессоров. 

В процессе фагоцитоза макрофаги презентируют антигены убитых «врагов» - выставляют их на поверхность своих мембран. Также они образуют цитокины – информационные молекулы, которые несут в себе данные о побежденном агрессоре.

С этим бесценным грузом макрофаги направляются к представителям другого звена иммунитета – лимфоцитам. Они передают им информацию и учат, как поступать, если в организм когда-нибудь еще раз проникнет носитель того же антигена. В результате иммунитет сохраняет по отношению к нему полную боеготовность.

К сожалению, иногда личного опыта наших макрофагов или других фагоцитов недостаточно для того, чтобы иммунная система работала должным образом и правильно реагировала на вредоносные объекты. Чтобы повысить ее эффективность и заодно улучшить состояние здоровья в целом, рекомендуется принимать препарат Трансфер Фактор. Он содержит цитокины, несущие в себе данные о всевозможных возбудителях заболеваний, токсинах и прочих вредоносных агентах. Препарат обучает иммунитет полноценной работе, что немедленно и благоприятным образом отражается на течении имеющихся заболеваний, состоянии обмена веществ и функции органов. Средство можно использовать в лечебных и профилактических целях.

transferfaktory.ru

Одураченные макрофаги, или Несколько слов о том, как злокачественные опухоли обманывают иммунитет

Статья на конкурс «био/мол/текст»: Иммунная система — это мощная многослойная защита нашего организма, которая потрясающе эффективна против вирусов, бактерий, грибов и других патогенов извне. Кроме того, иммунитет способен эффективно распознавать и уничтожать трансформированные собственные клетки, которые могут перерождаться в злокачественные опухоли. Однако сбои в работе иммунной системы (по генетическим либо другим причинам) приводят к тому, что однажды злокачественные клетки берут верх. Разросшаяся опухоль становится нечувствительной к атакам организма и не только успешно избегает уничтожения, но и активно «перепрограммирует» защитные клетки для обеспечения собственных нужд. Поняв механизмы, которые опухоль использует для подавления иммунного ответа, мы сможем разработать контрмеры и попытаться сдвинуть баланс в сторону активации собственных защитных сил организма для борьбы с болезнью.

Долгое время считалось, что причина низкой эффективности иммунного ответа при раке — то, что опухолевые клетки слишком похожи на нормальные, здоровые, чтобы иммунная система, настроенная на поиск «чужаков», могла их как следует распознавать. Этим как раз и объясняется тот факт, что иммунная система успешнее всего противостоит опухолям вирусной природы (их частота резко возрастает у людей, страдающих иммунодефицитом). Однако позже стало ясно, что это не единственная причина.

Оказалось, что взаимодействие раковых клеток с иммунной системой носит гораздо более разносторонний характер. Опухоль не просто «прячется» от атак, она умеет активно подавлять местный иммунный ответ и перепрограммировать иммунные клетки, заставляя их обслуживать собственные злокачественные нужды.

«Диалог» между переродившейся, вышедшей из-под контроля клеткой с ее потомством (то есть будущей опухолью) и организмом развивается в несколько стадий, и если вначале инициатива почти всецело находится на стороне защитных сил организма, то в конце (в случае развития болезни) — переходит на сторону опухоли. Несколько лет назад учеными-онкоиммунологами была сформулирована концепция «иммуноредактирования» (immunoediting), описывающая основные этапы этого процесса (рис. 1) [2].

Рисунок 1. Иммуноредактирование (immunoediting) в процессе развития злокачественной опухоли.

Первая стадия иммуноредактирования — процесс устранения (elimination). Под действием внешних канцерогенных факторов или в результате мутаций нормальная клетка «трансформируется» — приобретает способность неограниченно делиться и не отвечать на регуляторные сигналы организма. Но при этом она, как правило, начинает синтезировать на своей поверхности особые «опухолевые антигены» и «сигналы опасности». Эти сигналы привлекают клетки иммунной системы, прежде всего макрофаги, натуральные киллеры и Т-клетки. В большинстве случаев они успешно уничтожают «испортившиеся» клетки, прерывая развитие опухоли. Однако иногда среди таких «предраковых» клеток оказывается несколько таких, у которых иммунореактивность — способность вызывать иммунный ответ — по каким-то причинам оказывается ослабленной, они синтезируют меньше опухолевых антигенов, хуже распознаются иммунной системой и, пережив первую волну иммунного ответа, продолжают делиться.

В этом случае взаимодействие опухоли с организмом выходит на вторую стадию, стадию равновесия (equilibrium). Здесь иммунная система уже не может полностью уничтожить опухоль, но еще в состоянии эффективно ограничивать ее рост. В таком «равновесном» (и не обнаруживаемом обычными методами диагностики) состоянии микроопухоли могут существовать в организме годами. Однако такие затаившиеся опухоли не статичны — свойства составляющих их клеток постепенно меняются под действием мутаций и последующего отбора: преимущество среди делящихся опухолевых клеток получают такие, которые способны лучше противостоять иммунной системе, и в конце концов в опухоли появляются клетки-иммуносупрессоры. Они в состоянии не только пассивно избегать уничтожения, но и активно подавлять иммунный ответ. По сути, это эволюционный процесс, в котором организм невольно «выводит» именно тот вид рака, который его убьет.

Этот драматический момент знаменует собой переход опухоли к третьей стадии развития — избегания (escape), — на которой опухоль уже малочувствительна к активности клеток иммунной системы, более того — обращает их активность себе на пользу. Она принимается расти и метастазировать. Именно такая опухоль обычно диагностируется медиками и изучается учеными — две предыдущие стадии протекают скрыто, и наши представления о них основаны главным образом на интерпретации целого ряда косвенных данных.

Дуализм иммунного ответа и его значение в канцерогенезе

Существует множество научных статей, описывающих, как иммунная система борется с опухолевыми клетками, но не меньшее количество публикаций демонстрирует, что присутствие клеток иммунной системы в ближайшем опухолевом окружении является негативным фактором, коррелирующим с ускоренным ростом и метастазированием рака [2], [3]. В рамках концепции иммуноредактирования, описывающей, как изменяется характер иммунного ответа по мере развития опухоли, подобное двойственное поведение наших защитников получило, наконец, свое объяснение.

Переориентирование иммунной системы от борьбы с опухолью на ее защиту возможно благодаря пластичности клеток этой системы. Говоря об иммунном ответе, мы, как правило, используем «воинственные» метафоры — «борьба», «уничтожение», «подавление». Но мало уничтожить врага, будь то вирус, бактерия или другой паразит. Организм должен еще и исправить причиненные им повреждения. Регенерация поврежденных тканей и заживление ран тоже находятся под контролем клеток иммунной системы: она не только «воин», но еще и «целитель». Коварство рака заключается в том, что, будучи по сути «чужеродным агентом» в организме, он выделяет специальные вещества, которые подавляют активный иммунный ответ и побуждают лейкоциты воспринимать опухоль не как врага, требующего уничтожения, а как рану, требующую помощи, защиты и исцеления.

Мы рассмотрим некоторые механизмы того, как это происходит, на примере макрофагов. Похожие приемы опухоль использует и для того, чтобы обманывать другие клетки врожденного и приобретенного иммунитета.

Макрофаги — «клетки-воины» и «клетки-целители»

Макрофаги, пожалуй, самые знаменитые клетки врожденного иммунитета — именно с изучения их способностей к фагоцитозу Мечниковым и началась классическая клеточная иммунология. В организме млекопитающих макрофаги — боевой авангард: первыми обнаруживая врага, они не только пытаются уничтожить его собственными силами, но также привлекают к месту сражения другие клетки иммунной системы, активируя их. А после уничтожения чужеродных агентов принимаются активно участвовать в ликвидации причиненных повреждений, вырабатывая факторы, способствующие заживлению ран. Эту двойственную природу макрофагов опухоли используют себе на пользу.

В зависимости от преобладающей активности различают две группы макрофагов: М1 и М2. М1-макрофаги (их еще называют классически активированными макрофагами) — «воины» — отвечают за уничтожение чужеродных агентов (в том числе и опухолевых клеток), как напрямую, так и за счет привлечения и активации других клеток иммунной системы (например, Т-киллеров). М2 макрофаги — «целители» — ускоряют регенерацию тканей и обеспечивают заживление ран [4], [8].

Присутствие в опухоли большого количества М1-макрофагов тормозит ее рост [5], а в некоторых случаях может вызвать даже практически полную ремиссию (уничтожение). И наоборот: М2-макрофаги выделяют молекулы — факторы роста, которые дополнительно стимулируют деление опухолевых клеток, то есть благоприятствуют развитию злокачественного образования. Экспериментально было показано, что в опухолевом окружении обычно преобладают именно М2-клетки («целители»). Хуже того: под действием веществ, выделяемых опухолевыми клетками, активные М1-макрофаги «перепрограммируются» в М2-тип [6], перестают синтезировать антиопухолевые цитокины, такие как интерлейкин-12 (IL12) или фактор некроза опухолей (TNF) и начинают выделять в окружающую среду молекулы, ускоряющие рост опухоли и прорастание кровеносных сосудов, которые будут обеспечивать ее питание, например фактор роста опухолей (TGFb) и фактор роста сосудов (VGF). Они перестают привлекать и инициировать другие клетки иммунной системы и начинают блокировать местный (противоопухолевый) иммунный ответ (рис. 2).

Рисунок 2. М1- и М2-макрофаги: их взаимодействие с опухолью и другими клетками иммунной системы.

Ключевую роль в этом перепрограммировании играют белки семейства NF-kB [7]. Эти белки являются транскрипционными факторами, контролирующими активность множества генов, необходимых для М1 активации макрофагов. Наиболее важные представители этого семейства — р65 и р50, вместе образующие гетеродимер р65/р50, который в макрофагах активирует множество генов, связанных с острым воспалительным ответом, таких как TNF, многие интерлейкины, хемокины и цитокины. Экспрессия этих генов привлекает все новые и новые иммунные клетки, «подсвечивая» для них район воспаления. В то же время другой гомодимер семейства NF-kB — р50/р50 — обладает противоположной активностью: связываясь с теми же самыми промоторами, он блокирует их экспрессию, снижая градус воспаления.

И та, и другая активность NF-kB транскрипционных факторов очень важна, но еще важнее равновесие между ними. Было показано, что опухоли целенаправленно выделяют вещества, которые нарушают синтез p65 белка в макрофагах и стимулируют накопление ингибиторного комплекса р50/р50 [7]. Таким способом (помимо еще ряда других) опухоль превращает агрессивных М1-макрофагов в невольных пособников своего собственного развития: М2-тип макрофагов, воспринимая опухоль как поврежденный участок ткани, включают программу восстановления, однако секретируемые ими факторы роста только добавляют ресурсы для роста опухоли. На этом цикл замыкается — растущая опухоль привлекает новые макрофаги, которые перепрограммируются и стимулируют ее рост вместо уничтожения.

Реактивация иммунного ответа — актуальное направление антираковой терапии

Таким образом, в ближайшем окружении опухолей присутствует сложная смесь молекул: как активирующих, так и ингибирующих иммунный ответ. Перспективы развития опухоли (а значит, перспективы выживания организма) зависят от баланса ингредиентов этого «коктейля». Если будут преобладать иммуноактиваторы — значит, опухоль не справилась с задачей и будет уничтожена или ее рост сильно затормозится. Если же преобладают иммуносупрессорные молекулы — это значит, что опухоль смогла подобрать ключ и начнет быстро прогрессировать. Понимая механизмы, которые позволяют опухолям подавлять наш иммунитет, мы сможем разработать контрмеры и сдвинуть баланс в сторону уничтожения опухолей [8].

Как показывают эксперименты, «перепрограммирование» макрофагов (и других клеток иммунной системы) обратимо. Поэтому одним из перспективных направлений онко-иммунологии на сегодняшний день является идея «реактивации» собственных клеток иммунной системы пациента с целью усиления эффективности других методов лечения. Для некоторых разновидностей опухолей (например, меланом) это позволяет добиться впечатляющих результатов. Другой пример, обнаруженный группой Меджитова [9], — обычный лактат, молекула, которая производится при недостатке кислорода в быстрорастущих опухолях за счет эффекта Варбурга [10]. Эта простая молекула стимулирует перепрограммирование макрофагов, заставляя их поддерживать рост опухоли. Лактат транспортируется внутрь макрофагов через мембранные каналы, и потенциальная терапия заключается в блокировке этих каналов.

Развитие методов антираковой терапии в настоящее время идет по нескольким направлениям сразу , и все они важны. Ведь научившись управлять иммунным ответом так же эффективно, как это делают злокачественные опухоли, мы сумеем окончательно «переиграть» эту болезнь, которая остается одной из главных причин смертности в России и в мире.

  1. Страшней клешней на свете нет...;
  2. Schreiber R.D., Old L.J., Smyth M.J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 331, 1565–1570;
  3. Hanahan D. and Weinberg R.A. (2011). Hallmarks of cancer: the next generation. Cell. 144, 646–674;
  4. Martinez F.O. and Gordon S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13;
  5. Ma J., Liu L., Che G., Yu N., Dai F., You Z. (2010). The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 10, 112;
  6. Hagemann T., Wilson J., Burke F., Kulbe H., Li N.F., Plüddemann A. et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol. 176, 5023–5032;
  7. Mantovani A. and Sica A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237;
  8. Biswas S.K. and Mantovani A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896;
  9. Толл-подобные рецепторы: от революционной идеи Чарльза Джейнуэя до Нобелевской премии 2011 года;
  10. Colegio O.R., Chu N.Q., Szabo A.L., Chu T., Rhebergen A.M., Jairam V. et al. (2014). Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513, 559–563;
  11. Как распознать рак при помощи биомаркеров?;
  12. Биоинформатика: Большие БД против «большого Р».

biomolecula.ru

Макрофаг многоликий и вездесущий

: 31 Дек 2012 , Сколько сценариев у Вселенной? , том 47, №5

Сто тридцать лет назад замечательный русский исследователь И.И. Мечников в опытах на личинках морских звезд из Мессинского пролива сделал удивительное открытие, круто изменившее не только жизнь самого будущего Нобелевского лауреата, но и перевернувшее тогдашние представления об иммунной системе.

Втыкая в прозрачное тело личинки розовый шип, ученый обнаружил, что занозу окружают и атакуют крупные амебоидные клетки. И если чужеродное тело было небольшим, эти блуждающие клетки, которые Мечников назвал фагоцитами (от греч. пожиратель), могли полностью поглотить пришельца.

Долгие годы считалось, что фагоциты выполняют в организме функции «войск быстрого реагирования». Однако исследования последних лет показали, что благодаря своей огромной функциональной пластичности эти клетки еще и «определяют погоду» многих метаболических, иммунологических и воспалительных процессов, как в норме, так и при патологии. Это делает фагоциты перспективной мишенью при разработке стратегии лечения ряда тяжелых заболеваний человека

Подвижные клетки иммунной системы – фагоциты или макрофаги, присутствуют практически во всех тканях организма. Они осуществляют активный захват, переваривание и обез­вреживание чужеродных микроорганизмов (вирусов, бактерий, одноклеточных, паразитов), а также утилизацию биологического «мусора», такого как «невостребованные» и погибшие клетки (например, «стареющие» эритроциты).

В зависимости от своего микроокружения тканевые макрофаги могут выполнять и различные специализированные функции. Например, макрофаги костной ткани – остеокласты, также занимаются выведением из кости гидроксиапатита кальция. При недостаточности этой функции развивается мраморная болезнь – кость становится чрезмерно уплотненной и при этом хрупкой.

Но самым, пожалуй, удивительным свойством макрофагов оказалась их огромная пластичность, т. е. способность изменять свою транскрипционную программу («включение» тех или иных генов) и свой облик (фенотип). Следствием этой особенности является высокая разнородность клеточной популяции макрофагов, среди которых присутствуют не только «агрессивные» клетки, встающие на защиту организма-хозяина; но и клетки с «полярной» функцией, отвечающие за процессы «мирного» восстановления поврежденных тканей.

Липидные «антенны»

Своей потенциальной «многоликостью» макрофаг обязан необычной организации генетического материала – так называемому открытому хрома­тину. Этот не до конца изученный вариант структуры клеточного генома обеспечивает быстрое изменение уровня экспрессии (активности) генов в ответ на различные стимулы.

Выполнение макрофагом той или иной функции зависит от характера получаемых им стимулов. Если стимул будет распознан как «чужой», то происходит активация тех генов (и соответственно функций) макрофага, которые направлены на уничтожение «пришельца». Однако макрофаг могут активировать и сигнальные молекулы самого организма, которые побуждают эту иммунную клетку участвовать в организации и регуляции обмена веществ. Так, в условиях «мирного времени», т. е. при отсутствии патогена и обусловленного им воспалительного процесса, макрофаги участвуют в регуляции экспрессии генов, отвечающих за мета­болизм липидов и глюкозы, дифференцировку клеток жировой ткани.

Интеграция между взаимоисключающими «мирным» и «военным» направлениями работы макрофагов осуществляется путем изменения активности рецепторов клеточного ядра, представляющих собой особую группу регуляторных белков.

Среди этих ядерных рецепторов следует особо выделить так называемые липидные сенсоры, т. е. белки, способные взаимодействовать с липидами (например, окисленными жирными кислотами или производными холестерина) (Смирнов, 2009). Нарушение работы этих чувствительных к липидам регуляторных белков в макро­фагах может быть причиной системных обмен­ных нарушений. Например, дефицит в макрофагах одного из этих ядерных рецепторов, обозначаемых как PPAR-гамма, приводит к развитию диабета 2 типа и дисбалансу липидного и углеводного обмена во всем организме.

Клеточные метаморфозы

В разнородном сообществе макрофагов на основе базовых характеристик, определяющих их принципиальные функции, выделяют три основных клеточных субпопуляции: макрофаги М1, М2 и Мox, которые участвуют, соответственно, в процессах воспаления, восстановления поврежденных тканей, а также защите организма от окислительного стресса.

«Классический» макрофаг М1 формируется из клетки-предшественника (моноцита) под действием каскада внутриклеточных сигналов, запускающихся после распознавания инфекционного агента с помощью специальных рецепторов, расположенных на поверхности клетки.

Образование «пожирателя» М1 происходит в результате мощной активации генома, сопровождаемой активацией синтеза более чем сотни белков – так называемых факторов воспаления. К ним относятся ферменты, способствующие генерации свободных радикалов кислорода; белки, привлекающие в очаг воспаления другие клетки иммунной системы, а также белки, способные разрушать оболочку бактерий; воспалительные цитокины – вещества, обладающие свойствами активировать иммунные клетки и оказывать токсическое действие на остальное клеточное окружение. В клетке активируется фагоцитоз и макрофаг начинает активно разрушать и переваривать все, что встретится на его пути (Шварц, Свистельник, 2012). Так появляется очаг воспаления.

Однако уже на начальных этапах воспалительного процесса макрофаг М1 начинает активно секретировать и противовоспалительные субстанции – низкомолекулярные липидные молекулы. Эти сигналы «второго эшелона» начинают активировать вышеупомянутые липидные сенсоры в новых «рекрутах»-моноцитах, прибывающих в очаг воспаления. Внутри клетки запускается цепь событий, в результате которых активирующий сигнал поступает на определенные регуляторные участки ДНК, усиливая экспрессию генов, отвечающих за гармонизацию обмена веществ и одновременно подавляя активность «провоспалительных» (т. е. провоцирующих воспаление) генов (Душкин, 2012).

Так в результате альтернативной активации образуются макрофаги М2, которые завершают воспалительный процесс и способствуют тканевому восстановлению. Популяцию М2 макрофагов можно, в свою очередь, разделить на группы в зависимости от их специализации: уборщики мертвых клеток; клетки, участвующие в реак­ции приобретенного иммунитета, а также макрофаги, секретирующие факторы, которые способствуют замещению погибших тканей соединительной тканью.

Еще одна группа макрофагов – Мох, формируется в условиях так называемого окислительного стресса, когда в тканях возрастает опасность повреждения их свободными радикалами. Например, Мох составляют около трети всех макрофагов атеросклеротической бляшки. Эти иммунные клетки не только сами устойчивы к повреждающим факторам, но и участвуют в анти­оксидантной защите организма(Gui et al., 2012).

Пенистый камикадзе

Одной из самых интригующих метаморфоз макрофага является его превращение в так называемую пенистую клетку. Такие клетки были обнаружены в атеро­склеротических бляшках, а свое название получили из-за специфического внешнего вида: под микроскопом они напоминали мыльную пену. По сути, пенистая клетка – это тот же макрофаг М1, но переполненный жировыми включениями, преимущественно состоящими из водонерастворимых соединений холестерина и жирных кислот.

Была высказана гипотеза, ставшая общепринятой, что пенистые клетки образуются в стенке атеросклеротических сосудов в результате неконтролируемого поглощения макрофагами липопротеинов низкой плотности, переносящих «плохой» холестерин. Однако впоследствии было обнаружено, что накопление липидов и драматическое (в десятки раз!) возрастание скорости синтеза ряда липидов в макрофагах можно спровоцировать в эксперименте только лишь одним воспалением, без всякого участия липопротеинов низкой плотности (Душкин, 2012).

Это предположение подтвердилось клиническими наблюдениями: оказалось, что превращение макрофагов в пенистую клетку происходит при разнообразных заболеваниях воспалительной природы: в суста­вах – при ревматоидном артрите, в жировой ткани – при диабете, в почках – при острой и хронической недостаточности, в ткани мозга – при энцефалитах. Однако понадобилось около двадцати лет исследований, чтобы понять, как и зачем макрофаг при воспалении превращается в клетку, нафаршированную липидами.

Оказалось, что активация провоспалительных сигнальных путей в М1 макрофагах приводит к «выключению» тех самых липидных сенсоров, которые в нормальных условиях контролируют и нормализуют липидный обмен (Душкин, 2012). При их «выключении» клетка и начинает накапливать липиды. При этом образующиеся липидные включения представляют собой вовсе не пассивные жировые резервуары: входящие в их состав липиды обладают способностью усиливать воспалительные сигнальные каскады. Главная цель всех этих драматических изменений – любыми средствами активировать и усилить защитную функцию макрофага, направленную на уничтожение «чужих» (Melo, Drorak, 2012).

Однако высокое содержание холестерина и жирных кислот дорого обходится пенистой клетке – они стимулируют ее гибель путем апоптоза, запрограммированной клеточной смерти. На внешней поверхности мембраны таких «обреченных» клеток обнаруживается фосфолипид фосфатидилсерин, в норме расположенный внутри клетки: появление его снаружи является своеобразным «похоронным звоном». Это сигнал «съешь меня», который воспринимают М2 макрофаги. Поглощая апоптозные пенистые клетки, они начинают активно секретировать медиаторы заключительной, восстановительной стадии воспаления.

Фармакологическая мишень

Воспаление как типовой патологический процесс и ключевое участие в нем макрофагов является, в той или иной мере, важной составляющей в первую очередь инфекционных заболеваний, вызванных различными патологическими агентами, от простейших и бактерий до вирусов: хламидиальные инфекции, туберкулез, лейшманиоз, трипаносомоз и др. Вместе с тем макрофаги, как уже упоминалось выше, играют важную, если не ведущую, роль в развитии так называемых метаболических заболеваний: атеросклероза (главного виновника сердечно-сосудистых заболеваний), диабета, нейродегенеративных заболеваний мозга (болезнь Альцгеймера и Паркинсона, последствия инсультов и черепно-мозговых травм), ревматоидного артрита, а также онкологических заболеваний.

Разработать стратегию управления этими клетками при различных заболеваниях позволили современные знания о роли липидных сенсоров в формировании различных фенотипов макрофага.

Так, оказалось, что в процессе эволюции хламидии и туберкулезные палочки научились использовать липидные сенсоры макрофагов, чтобы стимулировать не опасную для них альтернативную (в М2) активацию макрофагов. Благодаря этому поглощенная макрофагом туберкулезная бактерия может, купаясь как сыр в масле в липидных включениях, спокойно дожидаться своего освобождения, а после гибели макрофага размножаться, используя содержимое погибших клеток в качестве пищи (Melo, Drorak, 2012).

Если в этом случае использовать синтетические акти­ваторы липидных сенсоров, которые препятствуют образованию жировых включений и, соответственно, предотвращают «пенистую» трансформацию макрофага, то можно подавить рост и понизить жизнеспособность инфекционных патогенов. По крайней мере в экспериментах на животных уже удалось в разы снизить обсемененность легких мышей туберкулезными бациллами, используя стимулятор одного из липидных сенсоров или ингибитор синтеза жирных кислот (Lugo-Villarino et al., 2012).

Еще один пример – такие болезни, как инфаркт миокарда, инсульт и гангрена нижних конечностей, опаснейшие осложнения атеросклероза, к которым приводит разрыв так называемых нестабильных атеросклеротических бляшек, сопровождаемый моментальным образованием тромба и закупоркой кровеносного сосуда.

Формированию таких нестабильных атеросклеротических бляшек и способствует макрофаг М1/пенистая клетка, который продуцирует ферменты, растворяющие коллагеновое покрытие бляшки. В этом случае наиболее эффективная стратегия лечения – превращение нестабильной бляшки в стабильную, богатую коллагеном, для чего требуется трансформировать «агрессивный» макрофаг М1 в «умиротворенный» М2.

Экспериментальные данные свидетельствуют, что подобной модификации макрофага можно добиться, подавляя в нем продукцию провоспалительных факто­ров. Такими свойствами обладает ряд синтетических активаторов липидных сенсоров, а также природные вещества, например, куркумин – биофлавоноид, входя­щий в состав корня куркумы, хорошо известной индийской пряности.

Нужно добавить, что такая трансформация макрофагов актуальна при ожирении и диабете 2 типа (большая часть макрофагов жировой ткани имеет М1 фенотип), а также при лечении нейродегенеративных заболеваний мозга. В последнем случае в мозговых тканях происходит «классическая» активация макрофагов, что приводит к повреждению нейронов и накоплению токсичных веществ. Превращение М1-агрессоров в мирных дворников М2 и Mox, уничтожающих биологический «мусор», может в ближайшее время стать ведущей стратегией лечения этих заболеваний (Walace, 2012).

С воспалением неразрывно связано и раковое перерождение клеток: например, имеются все основания считать, что 90 % опухолей в печени человека возникает как следствие перенесенных инфекционных и токсических гепатитов. Поэтому с целью профилактики раковых заболеваний необходимо контролировать популяцию М1 макрофагов.

Однако не все так просто. Так, в уже сформированной опухоли макрофаги преимущественно приобретают признаки статуса М2, который содействует выживанию, размножению и распространению самих раковых клеток. ­Более того, такие макрофаги начинают подавлять противораковый иммунный ответ лимфоцитов. Поэтому для лечения уже образовавшихся опухолей разрабатывается другая стратегия, основанная на стимулировании у макрофагов признаков классической М1-активации (Solinas et al., 2009).

Примером такого подхода служит технология, разработанная в ново­сибирском Институте клиниче­ской иммунологии СО РАМН, при которой макрофаги, полученные из крови онкобольных, культивируют в присутствии стимулятора зимозана, который накапливается в клетках. Затем макрофаги вводят в опухоль, где зимозан освобождается и начинает стимулировать классическую активацию «опухолевых» макрофагов.

Сегодня становится все более очевидно, что соединения, вызывающие мета­морфозы макрофагов, оказывают выраженное атеропротективное, антидиабетическое, нейропротективное действие, а также защищают ткани при аутоиммунных заболеваниях и ревматоидном артрите. Однако такие препараты, имеющиеся на сегодня в арсенале практикующего врача, – фибраты и производные тиазолидона, хотя и снижают смертность при этих тяжелых заболеваниях, но при этом имеют выраженные тяжелые побочные действия.

Эти обстоятельства стимулируют химиков и фармакологов к созданию безопасных и эффективных аналогов. За рубежом – в США, Китае, Швейцарии и Израиле уже проводятся дорогостоящие клинические испытания подобных соединений синтетического и природного происхождения. Несмотря на финансовые трудности, российские, в том числе и новосибирские, исследователи также вносят свой посильный вклад в решение этой проблемы.

Так, на кафедре химии Новосибирского государственного университета было получено безопасное соединение TS-13, стимулирующее образование Мox фагоцитов, которое обладает выраженным противовоспалительным эффектом и оказывает нейропротективное действие в экспериментальной модели болезни Паркинсона (Дюбченко и др., 2006; Зенков и др., 2009).

В Новосибирском институте органической химии им. Н. Н. Ворожцова СО РАН созданы безопасные антидиабетические и противоатеросклеротические препараты, действующие сразу на несколько факторов, благодаря которым «агрессивный» макрофаг М1 превращается в «мирный» М2 (Dikalov et al., 2011). Большой интерес вызывают и растительные препараты, получаемые из винограда, черники и других растений с помощью механохимической технологии, разработанной в Институте химии твердого тела и механохимии СО РАН (Dushkin, 2010).

С помощью финансовой поддержки государства можно в самое ближайшее время создать отечественные средства для фармакологических и генетических манипуляций с макрофагами, благодаря которым появится реальная возможность превращать эти иммунные клетки из агрессивных врагов в друзей, помогающих организму сохранить или вернуть здоровье.

Литература

Душкин М. И. Макрофаг/пенистая клетка как атрибут воспаления: механизмы образования и функциональная роль // Биохимия, 2012. T. 77. C. 419—432.

Смирнов А. Н. Липидная сигнализация в контексте атерогенеза // Биохимия. 2010. Т. 75. С. 899—919.

Шварц Я. Ш., Свистельник А. В.Функциональные фенотипы макрофагов и концепция М1-М2-поляризации. Ч. 1 Провоспалительный фенотип. // Биохимия. 2012. Т. 77. С. 312—329.

: 31 Дек 2012 , Сколько сценариев у Вселенной? , том 47, №5

scfh.ru

Что такое макрофаги? GcMAF уникальный препарат для активации деятельности макрофагов.

МАКРОФАГИ. Макрофаг (с др. греческого большой пожиратель») представляют собой особый вид крупных белых клеток крови, которые одновременно с теми клетками, которые, по сути, являются их предшественниками создают симбиоз, именуемый системой монуклеарных фагоцитов (с др. греческого «поглощать (есть) клетку»). В качестве клеток-предшественников  в данном  случае выступают монобласты промоциты и моноциты.

 Происхождение и назначение  макрофагов 

Макрофаги называют клетками-«мусорщиками» неспроста, так как  все, с чем они соприкасаются, поглощается  и уничтожается посредством переваривания. Определенная доля  макрофагов постоянно располагается в определенных местах: в капиллярах и лимфатических узлах, в печени, в легких, в соединительной и нервной тканях, в костях, включая костный мозг. Другие блуждают между клетками, постепенно скапливаясь в тех местах, где наиболее вероятно проникновение в организм того или иного возбудителя инфекции. Все типы макрофагов происходят из  моноцитов крови, а моноциты,  в свою очередь, появляются  из промоноцитов костного мозга, постепенносозревающих  из более ранних клеток-предшественников до достижения определенной стадии. Примечательно, что  у макрофагов существует обратная связь с этими клетками-предшественниками; обеспечиваемая благодаря их способности  продуцировать в кровь  цитокины (ростовые факторы), которые поступают с кровью в костный мозг, тем самым усиливая естественные процессы деления клеток, образованных ранее. Данный процесс активизируется, например, при наличии тех или иных инфекций,  когда многие макрофаги погибают в борьбе с «врагами»,  им на сменупоставляются  новые макрофаги, в ускоренном темпе  созревающие в костном мозге. 

Как «работают»  макрофаги при наличии инфекций  в организме?

Первыми из иммунных клеток с микробом встречаются макрофаги, являясь своего рода «разведчиком», цель которого тщательно изучить враждебную ему клетку при помощи своих рецепторов, в качестве которых выступают разные молекулы, расположенные на их  поверхности.После проникновения  в организм вирусы, бактерии, паразиты (микробы)  выделяют свои молекулы-токсины; макрофаги распознают их своими соответствующими рецепторами и концентрируются в месте максимального скопления «врагов» в очаге. Там начинается основная работа макрофагов захватить «врагов» (фаготицоз), попытаться  убить их во внутриклеточных вакуолях и переварить, то есть очистить организм от «врагов». 

Воздействие  микробных токсинов на конкретные  рецепторы является  сигналом для  активации генов в геноме макрофагов. Макрофаг выделяет в кровь молекулы-цитокины, выступающие в качестве связующего звена  между макрофагами  и клетками всего  организма. Функционируя непосредственно  в очаге инфекции, макрофаги нарабатывают и выделяют молекулы интерлейкина-1, которые посредством кровотока направляются  в мозг и уже там оказывают нужное воздействие  на центр терморегуляции, в результате чего  у пациента  повышается температура,включая таким образом  один из самых древних основных защитных  механизмов организма.  В результате размножение большинства паразитирующих микробов  при повышенной температуре резко замедляется;  защитные же клетки наоборот становятся гораздо  болееактивными, что делает борьбу с заболеванием гораздо эффективней.  Молекулы интерлейкина-1 действуют через свои рецепторы на лимфоциты, передавая им сигнал активации.  Продукт макрофагов интерлейкин-1 способен запустить серию  других цитокинов интерлейкины-2,3,4,5,6,7,8,9  итд, которые находят соответствующие рецепторы на  Т- лимфоцитах,  В-лимфоцитах и других клетках, передавая им  сигналы, способствующие активации отдельных функций. Это исключительно важно в  тех случаях, когда  одни макрофаги,  без подключения дополнительных «сил», не в состоянии побороть инфекцию, вследствие чего  возникает необходимость включения иммунного ответа одновременно всех  звеньев иммунитета. Непосредственно в очаге инфекции макрофаги постоянно нарабатывают определенные  продукты, среди которых особое место  уделяетсяотдельным молекулам, именуемым фактор некроза опухолей (ФНО). Такое название связано  с их способностью к поражению  клеток- мишеней, к числу которых относятся и опухолевые клетки.  Ранее их  гибель расценивалась не иначе как некроз.  Рецепторы, предназначенные для данного фактора,  обнаружены на поверхности всех  ядерных клеток,  что обеспечивает возможность ФНО вмешиваться в разные процессы. Фактор некроза опухолей  имеет непосредственное отношение к направлению молекул в  очаг инфекции, откуда они начинают активное  рецепторное воздействие на эндотелиальные клетки внутренней оболочки сосудов. В  эндотелиальных клетках активации подвергаются гены, ответственные за синтез особых молекул, которые  обеспечивают прилипание к сосудистой стенке  циркулирующих в крови гранулоцитов, моноцитов, лимфоцитов. 

Прилипание к эндотелию для клетки шаг к выходу из сосуда и мобилизации в очаге инфекции.  ФНО помогает макрофагам, способствуетувеличению  количества макрофагов в очаге инфекции. У  самих макрофагов  есть рецепторы для ФНО, через которые он может  активировать макрофаги, посылая с поверхности этих клеток сигналы к ядру, после чего включаются разные гены для организации  ответа на «вторжение». 

GcMAF уникальный препарат для активации деятельности макрофагов 

К сожалению для  нас, несмотря на свои колоссальные возможности, макрофаги могут быть неактивны. Например, все клетки злокачественных опухолей, а также вирусные и инфекционные клетки продуцируют белок альфа-N- ацетилгалактозаминидаза (нагалаза), который блокирует продукцию GcMAF-гликопротеина, стимулирующего активацию макрофагов, препятствуя таким образом нормальной деятельности иммунной системы. А  в отсутствии активности иммунной системы неконтролируемо развиваются  злокачественные опухоли и возрастает уровень вирусных инфекций. На этот случай существует препарат GcMAF, который активирует макрофаги и усиливает активность иммунного ответа. Приобрести подлинный GcMAF можно в  клинике доктора Ведова. 

drvedov.ru

Функции макрофагов. Тканевые макрофаги - промоноциты

Макрофаги – это клетки иммунитета, которые находятся в тканях. Однако они проводят там не всю свою жизнь; на ее протяжении они несколько раз «переезжают». 

Тканевые макрофаги возникают из клеток, называемых промоноцитами. Те образуются в костном мозге. Они  выходят оттуда и перемещаются в кровь, преобразуясь в моноциты. Последние несколько часов циркулируют в кровотоке, и лишь после этого перемещаются в ткани. Вот на этом этапе и формируются истинные макрофаги, которые в дальнейшем обосновываются в печени, селезенке, мышцах и всех других тканях. А в чем же состоят функции этих клеток?

Во-первых, роль макрофагов заключается в том, что они фагоцитируют (пожирают, уничтожают) попавшие в организм бактерии, чужеродные вещества и т.д.

Они обладают способностью к передвижению, поэтому постоянно «мониторят территорию» на предмет наличия в ней агрессоров.

Большое количество митохондрий позволяет им располагать достаточным запасом энергии для перемещений и «охоты» на агрессоров, а лизосомы, производящие различные ферменты, являются их оружием против чужеродных объектов. В том, что касается фагоцитоза, моноциты и макрофаги несколько отличаются: предшественники макрофагов, которые «живут» в крови, менее агрессивны, чем фагоциты тканей.

Во-вторых, тканевые макрофаги обладают обучающим воздействием на иммунную систему. Справившись с бактерией или другим «врагом», они презентируют его антигены: выставляют на поверхность своей мембраны компоненты уничтоженного объекта, по которым другие иммунные клетки могут получить информацию о его чужеродности. Кроме того, макрофаги выделяют цитокины – информационные молекулы. Со всем этим багажом клетки перемещаются к лимфоцитам и делятся с ними ценными сведениями. Макрофаги «рассказывают» лимфоцитам о том, что тот или иной объект – вредоносный, и при следующей встрече с ним надо поступать самым жестким образом. 

В-третьих, роль макрофагов заключается в образовании ими многих биологически активных веществ. Например, они синтезируют:

• около десятка разных ферментов, расщепляющих белки, жиры и углеводы: все это нужно для активного уничтожения агрессоров;

• кислородные радикалы, также необходимые для борьбы с чужеродными агентами;

• простагландины, лейкотриены, интерлейкины, фактор некроза опухолей – соединения, которые позволяют макрофагам усиливать работу своих «сородичей», других фагоцитов и прочих звеньев иммунитета, вызывать воспаление и лихорадку;

• вещества, активизирующие созревание и выход из костного мозга новых будущих макрофагов и других фагоцитов;

• компоненты системы комплемента (это особая система организма, которая отвечает за его общую защиту);  

• ряд белков сыворотки крови;

• транспортные белки, которые обеспечивают перенос в организме железа, витаминов и других веществ;

• вещества, которые стимулируют процессы заживления, ангиогенеза (образования новых сосудов) и др.

Таким образом, макрофаги не только «ставят на уши» всю иммунную систему, но и активно содействуют процессам восстановления организма при начавшихся заболеваниях, что идет нам только на пользу. 

Далее. Макрофаги пытаются ограничить вредное воздействие многих других заболеваний, помимо инфекционных. К примеру, они препятствуют быстрому прогрессированию атеросклероза, борются с раковыми клетками и др. И даже при аутоиммунных процессах, когда фагоциты разрушают собственные структуры тела человека, макрофаги стараются помочь: они фильтруют из крови иммунные комплексы, с большим количеством которых сопряжена высокая активность заболевания. 

Если делать выводы, то моноциты и макрофаги – большие трудяги, без участия которых были бы невозможны функционирование и даже существование иммунной защиты. А без иммунитета, в свою очередь, невозможно сохранение здоровья.

Помня об этом, очень важно заботиться о поддержании иммунитета. Для этого необходимо вести здоровый образ жизни, своевременно лечить возникшие заболевания, принимать витамины, а также специализированные иммуномодуляторы. Среди последних желательно выбирать самые безопасные и натуральные, которые естественным образом будут воздействовать на протекание иммунных процессов. 

Для этой роли отлично подходит препарат Трансфер Фактор. Его действующий компонент – информационные молекулы – и сами является продуктами фагоцитоза, так что они проявляют свой эффект мягко, не создавая конфликта в системе иммунной защиты. Трансфер Фактор может быть использован и для профилактики заболеваний, и при уже возникших нарушениях. В любом случае его действие будет естественным, физиологическим, бережным, но при этом сильным и эффективным.

transferfaktory.ru

Макрофаги - это... Что такое Макрофаги?

  • Макрофаги — …   Википедия

  • МАКРОФАГИ — (от греч. makros: большой и phago ем), сип. мегалофаги, макрофагоциты, большие фагоциты. Термин М. предложен Мечниковым, разделившим все клетки, способные к фагоцитозу, на малых фагоцитов, микрофагов (см.), и больших фагоцитов, макрофагов. Под… …   Большая медицинская энциклопедия

  • МАКРОФАГИ — (от макро... и ...фаг) (полибласты) клетки мезенхимного происхождения у животных и человека, способные к активному захвату и перевариванию бактерий, остатков клеток и др. чужеродных или токсичных для организма частиц (см. Фагоцитоз). К макрофагам …   Большой Энциклопедический словарь

  • МАКРОФАГИ — (от макро... и ...фаг), клетки мезенхимного происхождения в животном организме, способные к активному захвату и перевариванию бактерий, остатков погибших клеток и др. чужеродных и токсичных для организма частиц. Термин «М.» введён И. И.… …   Биологический энциклопедический словарь

  • Макрофаги — главный тип клеток системы мононуклеарных фагоцитов. Это крупные (10 24 мкм) долгоживущие клетки с хорошо развитым лизосомальным и мембранным аппаратом. На их поверхности имеются рецепторы к Fc фрагменту IgGl и IgG3, C3b фрагменту С, рецепторам В …   Словарь микробиологии

  • МАКРОФАГИ — [от макро... и фаг (и)], организмы, пожирающие, крупную добычу. Ср. Микрофаги. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 …   Экологический словарь

  • макрофаги — Вид лимфоцитов, которые обеспечивают неспецифическую защиту за счет фагоцитоза и участвуют в развитии иммунного ответа как антигенпредставляющие клетки (antigen presenting cells). [Англо русский глоссарий основных терминов по вакцинологии и… …   Справочник технического переводчика

  • макрофаги — (от макро... и ...фаг) (полибласты), клетки мезенхимного происхождения у животных и человека, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных или токсичных для организма частиц (см. Фагоцитоз).… …   Энциклопедический словарь

  • макрофаги — (см. макро... + ...фаг) клетки соединительной ткани животных и человека, способные к захватыванию и перевариванию различных посторонних организму частичек (в том числе микробов); и. и. мечников назвал эти клетки макрофагами, в отличие от… …   Словарь иностранных слов русского языка

  • макрофаги — ів, мн. (одн. макрофа/г, а, ч.). Клітини сполучної тканини тваринних організмів, здатні схоплювати й перетравлювати бактерії, рештки загиблих клітин та інші чужорідні або токсичні для організму частинки. •• Плацента/рні макрофа/ги макрофаги, що… …   Український тлумачний словник

dic.academic.ru


Смотрите также